Application of association analysis and natural language processing to improve maintenance management
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/00130000069tc |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/38743 |
Resumo: | With the advancement of technology in various industrial sectors, companies have been generating large amounts of data at all times. These data not only reveal a company's history, but hide relevant patterns that, if strategically explored, can give the company competitive advantages. For this issue, Data Science has stood out as a science that brings effective solutions through a wide variety of techniques that not only clean, structure and extract information from databases, but also provide useful information/indicators for decision-making processes. In the maintenance management field, the company’s failure report database represents an important asset, but has been little explored regarding their existing failure patterns and relationships, which may provide important improvements to the maintenance management systems. The Association Analysis is a sophisticated Data Science technique used to identify cause-and effect relationships among item sets of the most diverse nature, like code numbers and words. Also, Natural Language Processing is a set of Data Science techniques that support the textual data processing to overcome all the language challenges faced when managing this type of data, and provide relevant portions of it to be explored. The process of extracting knowledge from databases is called Knowledge Discovery in Database (KDD) and this process aims, not only to extract relevant information from databases, but also to support decision-making processes. This research aims to propose and apply a KDD Process, which unifies Natural Language Processing techniques with Association Analysis to process a failure report database, and out of its results, imply maintenance management improvements. The KDD Process’ output in the application section revealed the existence of relevant patterns and strong cause-effect relationships among sets of failure codes and among sets of words presented in the failure descriptions. The knowledge obtained in those files was committed to relevant improvements in different maintenance management processes, like scheduling, team assignment, spare-parts replenishment, resource distribution, FMEA/FMECA/RCM, and so on. |
id |
UFPE_61c4739ccb03fe4953caaa8f8b3b3f56 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/38743 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
FREIRE, Flávio de Oliveirahttp://lattes.cnpq.br/5860466872416575http://lattes.cnpq.br/7741826884583892LOPES, Rodrigo SampaioDO VAN, Phuc2020-11-23T18:34:09Z2020-11-23T18:34:09Z2020-07-22FREIRE, Flávio de Oliveira. Application of association analysis and natural language processing to improve maintenance management. 2020. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Pernambuco, Caruaru, 2020.https://repositorio.ufpe.br/handle/123456789/38743ark:/64986/00130000069tcWith the advancement of technology in various industrial sectors, companies have been generating large amounts of data at all times. These data not only reveal a company's history, but hide relevant patterns that, if strategically explored, can give the company competitive advantages. For this issue, Data Science has stood out as a science that brings effective solutions through a wide variety of techniques that not only clean, structure and extract information from databases, but also provide useful information/indicators for decision-making processes. In the maintenance management field, the company’s failure report database represents an important asset, but has been little explored regarding their existing failure patterns and relationships, which may provide important improvements to the maintenance management systems. The Association Analysis is a sophisticated Data Science technique used to identify cause-and effect relationships among item sets of the most diverse nature, like code numbers and words. Also, Natural Language Processing is a set of Data Science techniques that support the textual data processing to overcome all the language challenges faced when managing this type of data, and provide relevant portions of it to be explored. The process of extracting knowledge from databases is called Knowledge Discovery in Database (KDD) and this process aims, not only to extract relevant information from databases, but also to support decision-making processes. This research aims to propose and apply a KDD Process, which unifies Natural Language Processing techniques with Association Analysis to process a failure report database, and out of its results, imply maintenance management improvements. The KDD Process’ output in the application section revealed the existence of relevant patterns and strong cause-effect relationships among sets of failure codes and among sets of words presented in the failure descriptions. The knowledge obtained in those files was committed to relevant improvements in different maintenance management processes, like scheduling, team assignment, spare-parts replenishment, resource distribution, FMEA/FMECA/RCM, and so on.Com o avanço da tecnologia nos diversos setores industriais, empresas tem gerado grandes quantidades de dados a todo momento. Esses dados não apenas revelam um histórico da empresa, mas escondem padrões relevantes que, se explorados estrategicamente, podem conceder vantagens competitivas a mesma. Nesse sentido, Data Science é uma ciência que traz solução para essa e outras questões através de uma grande variedade de técnicas que não apenas limpam, estruturam e extraem informações de bases de dados, mas também auxiliam o processo de tomada de decisão. No âmbito da gestão da manutenção, o registro de falhas representa um ativo importante, mas este tem sido pouco explorado em relação aos padrões e relacionamentos de falhas existentes que pode fornecer melhorias importantes nos sistemas de gerenciamento de manutenção. A Análise de Associação é uma técnica sofisticada de Data Science usada para identificar relações de causa e efeito entre conjuntos de itens das mais diversas naturezas, como dados numéricos e textuais. Além disso, o Processamento de Linguagem Natural (PLN) é um conjunto de técnicas de Data Science que dão suporte ao processamento de dados textuais, superando todos os desafios de linguagem enfrentados ao gerenciar esse tipo de dado, e fornecem partes relevantes a serem exploradas. O processo de extração de conhecimento em bancos de dados é chamado de Knowledge Discovery in Database (KDD) e esse processo visa não apenas extrair informações relevantes dos bancos de dados, mas também apoiar os processos de tomada de decisão. Este trabalho objetiva propor e aplicar um Processo KDD, que unifique técnicas de Processamento de Linguagem Natural com a Análise de Associação para processar um banco de dados de relatórios de falhas e, a partir de seus resultados, implicar melhorias no gerenciamento de manutenção. O output do processo KDD apresentado na aplicação revelou a existência de padrões relevantes e fortes relações de causa-efeito entre o conjunto de códigos de falha e entre conjuntos de palavras apresentadas nas descrições de falha. O conhecimento obtido nesses arquivos foi conectado com melhorias consideráveis nos diferentes processos de gerenciamento de manutenção, como scheduling, designação de trabalho, compra de peças de reposição, distribuição de recursos, FMEA / FMECA / RCM, entre outros.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia de Producao / CAAUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessGerenciamento de recursos de informaçãoProcessamento de linguagem natural (Computação)Mineração de dados (Computação)Manutenção produtiva totalApplication of association analysis and natural language processing to improve maintenance managementinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTDISSERTAÇÃO Flávio de Oliveira Freire.pdf.txtDISSERTAÇÃO Flávio de Oliveira Freire.pdf.txtExtracted texttext/plain168652https://repositorio.ufpe.br/bitstream/123456789/38743/4/DISSERTA%c3%87%c3%83O%20Fl%c3%a1vio%20de%20Oliveira%20Freire.pdf.txtff7e365b26edd6542e7eaddd99481dd2MD54THUMBNAILDISSERTAÇÃO Flávio de Oliveira Freire.pdf.jpgDISSERTAÇÃO Flávio de Oliveira Freire.pdf.jpgGenerated Thumbnailimage/jpeg1211https://repositorio.ufpe.br/bitstream/123456789/38743/5/DISSERTA%c3%87%c3%83O%20Fl%c3%a1vio%20de%20Oliveira%20Freire.pdf.jpgd6dab54a4efb8443a0c0947995fd24b5MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/38743/3/license.txtbd573a5ca8288eb7272482765f819534MD53ORIGINALDISSERTAÇÃO Flávio de Oliveira Freire.pdfDISSERTAÇÃO Flávio de Oliveira Freire.pdfapplication/pdf2318843https://repositorio.ufpe.br/bitstream/123456789/38743/1/DISSERTA%c3%87%c3%83O%20Fl%c3%a1vio%20de%20Oliveira%20Freire.pdf964e0b18d598f5dab295c63df7ddc4f6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/38743/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52123456789/387432020-11-24 02:15:52.713oai:repositorio.ufpe.br:123456789/38743TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-11-24T05:15:52Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Application of association analysis and natural language processing to improve maintenance management |
title |
Application of association analysis and natural language processing to improve maintenance management |
spellingShingle |
Application of association analysis and natural language processing to improve maintenance management FREIRE, Flávio de Oliveira Gerenciamento de recursos de informação Processamento de linguagem natural (Computação) Mineração de dados (Computação) Manutenção produtiva total |
title_short |
Application of association analysis and natural language processing to improve maintenance management |
title_full |
Application of association analysis and natural language processing to improve maintenance management |
title_fullStr |
Application of association analysis and natural language processing to improve maintenance management |
title_full_unstemmed |
Application of association analysis and natural language processing to improve maintenance management |
title_sort |
Application of association analysis and natural language processing to improve maintenance management |
author |
FREIRE, Flávio de Oliveira |
author_facet |
FREIRE, Flávio de Oliveira |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5860466872416575 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7741826884583892 |
dc.contributor.author.fl_str_mv |
FREIRE, Flávio de Oliveira |
dc.contributor.advisor1.fl_str_mv |
LOPES, Rodrigo Sampaio |
dc.contributor.advisor-co1.fl_str_mv |
DO VAN, Phuc |
contributor_str_mv |
LOPES, Rodrigo Sampaio DO VAN, Phuc |
dc.subject.por.fl_str_mv |
Gerenciamento de recursos de informação Processamento de linguagem natural (Computação) Mineração de dados (Computação) Manutenção produtiva total |
topic |
Gerenciamento de recursos de informação Processamento de linguagem natural (Computação) Mineração de dados (Computação) Manutenção produtiva total |
description |
With the advancement of technology in various industrial sectors, companies have been generating large amounts of data at all times. These data not only reveal a company's history, but hide relevant patterns that, if strategically explored, can give the company competitive advantages. For this issue, Data Science has stood out as a science that brings effective solutions through a wide variety of techniques that not only clean, structure and extract information from databases, but also provide useful information/indicators for decision-making processes. In the maintenance management field, the company’s failure report database represents an important asset, but has been little explored regarding their existing failure patterns and relationships, which may provide important improvements to the maintenance management systems. The Association Analysis is a sophisticated Data Science technique used to identify cause-and effect relationships among item sets of the most diverse nature, like code numbers and words. Also, Natural Language Processing is a set of Data Science techniques that support the textual data processing to overcome all the language challenges faced when managing this type of data, and provide relevant portions of it to be explored. The process of extracting knowledge from databases is called Knowledge Discovery in Database (KDD) and this process aims, not only to extract relevant information from databases, but also to support decision-making processes. This research aims to propose and apply a KDD Process, which unifies Natural Language Processing techniques with Association Analysis to process a failure report database, and out of its results, imply maintenance management improvements. The KDD Process’ output in the application section revealed the existence of relevant patterns and strong cause-effect relationships among sets of failure codes and among sets of words presented in the failure descriptions. The knowledge obtained in those files was committed to relevant improvements in different maintenance management processes, like scheduling, team assignment, spare-parts replenishment, resource distribution, FMEA/FMECA/RCM, and so on. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-11-23T18:34:09Z |
dc.date.available.fl_str_mv |
2020-11-23T18:34:09Z |
dc.date.issued.fl_str_mv |
2020-07-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FREIRE, Flávio de Oliveira. Application of association analysis and natural language processing to improve maintenance management. 2020. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Pernambuco, Caruaru, 2020. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/38743 |
dc.identifier.dark.fl_str_mv |
ark:/64986/00130000069tc |
identifier_str_mv |
FREIRE, Flávio de Oliveira. Application of association analysis and natural language processing to improve maintenance management. 2020. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de Pernambuco, Caruaru, 2020. ark:/64986/00130000069tc |
url |
https://repositorio.ufpe.br/handle/123456789/38743 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Engenharia de Producao / CAA |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/38743/4/DISSERTA%c3%87%c3%83O%20Fl%c3%a1vio%20de%20Oliveira%20Freire.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/38743/5/DISSERTA%c3%87%c3%83O%20Fl%c3%a1vio%20de%20Oliveira%20Freire.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/38743/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/38743/1/DISSERTA%c3%87%c3%83O%20Fl%c3%a1vio%20de%20Oliveira%20Freire.pdf https://repositorio.ufpe.br/bitstream/123456789/38743/2/license_rdf |
bitstream.checksum.fl_str_mv |
ff7e365b26edd6542e7eaddd99481dd2 d6dab54a4efb8443a0c0947995fd24b5 bd573a5ca8288eb7272482765f819534 964e0b18d598f5dab295c63df7ddc4f6 e39d27027a6cc9cb039ad269a5db8e34 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172738507079680 |