Predição de compatibilidade entre cultivares em processos de enxertia : um estudo comparativo de técnicas baseadas em sistemas de recomendação
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000g4s7 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/47653 |
Resumo: | A viticultura é a ciência que estuda o cultivo da uva para produção de sucos, vinhos e outros derivados. Tanto os produtos quanto a cadeia produtiva possuem elevada importância soci- oeconômica e cultural em grande parte do mundo. Recentemente, técnicas de enxertia vêm sendo aplicadas para aumentar a produtividade e a qualidade no setor, no entanto, o processo para encontrar cultivares de porta-enxerto que sejam compatíveis com enxertos de videiras é essencialmente experimental, lento e custoso. Embora a utilização de aprendizagem de má- quina no Agronegócio não seja novidade, a literatura carece de trabalhos que demonstrem a aplicabilidade dessa técnica para apoiar especificamente processos de enxertia. Este trabalho, por meio de uma perspectiva de Sistema de Recomendação, oferece uma comparação entre abordagens de predição e de classificação para o problema da seleção de cultivares de enxerto e porta-enxerto. Além disso, também avalia os desempenhos de algoritmos baseados em fil- tragem colaborativa com os de algoritmos baseados em métodos de Kernel, para as tarefas de predição de ratings e de classificação de interações. Ao todo, 17 modelos baseados em algoritmos de filtragem colaborativa e métodos de kernel foram avaliados em um conjunto de dados de 251 interações rotuladas, atingindo o valor máximo de 96% para a métrica f1-score. Os resultados indicaram uma vantagem significativa para a abordagem de classificação, espe- cialmente para os modelos baseados em kernel, bem como a viabilidade de uma ferramenta de apoio à decisão para orientar as escolhas de especialistas das melhores cultivares para enxertia. |
id |
UFPE_623e888f5bb44061661b99c6be2a27f9 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/47653 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SILVA, Thiago Batista Rodrigueshttp://lattes.cnpq.br/7228187527181412http://lattes.cnpq.br/2984888073123287http://lattes.cnpq.br/0622594061462533PRUDÊNCIO, Ricardo Bastos CavalcanteNASCIMENTO, André Câmara Alves do2022-11-17T14:41:04Z2022-11-17T14:41:04Z2022-08-12SILVA, Thiago Batista Rodrigues. Predição de compatibilidade entre cultivares em processos de enxertia: um estudo comparativo de técnicas baseadas em sistemas de recomendação. 2022. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/47653ark:/64986/001300000g4s7A viticultura é a ciência que estuda o cultivo da uva para produção de sucos, vinhos e outros derivados. Tanto os produtos quanto a cadeia produtiva possuem elevada importância soci- oeconômica e cultural em grande parte do mundo. Recentemente, técnicas de enxertia vêm sendo aplicadas para aumentar a produtividade e a qualidade no setor, no entanto, o processo para encontrar cultivares de porta-enxerto que sejam compatíveis com enxertos de videiras é essencialmente experimental, lento e custoso. Embora a utilização de aprendizagem de má- quina no Agronegócio não seja novidade, a literatura carece de trabalhos que demonstrem a aplicabilidade dessa técnica para apoiar especificamente processos de enxertia. Este trabalho, por meio de uma perspectiva de Sistema de Recomendação, oferece uma comparação entre abordagens de predição e de classificação para o problema da seleção de cultivares de enxerto e porta-enxerto. Além disso, também avalia os desempenhos de algoritmos baseados em fil- tragem colaborativa com os de algoritmos baseados em métodos de Kernel, para as tarefas de predição de ratings e de classificação de interações. Ao todo, 17 modelos baseados em algoritmos de filtragem colaborativa e métodos de kernel foram avaliados em um conjunto de dados de 251 interações rotuladas, atingindo o valor máximo de 96% para a métrica f1-score. Os resultados indicaram uma vantagem significativa para a abordagem de classificação, espe- cialmente para os modelos baseados em kernel, bem como a viabilidade de uma ferramenta de apoio à decisão para orientar as escolhas de especialistas das melhores cultivares para enxertia.Viticulture is the science that studies the cultivation of grapes for the production of juices, wines and other derivatives. Both the products and the production chain have high socioeco- nomic and cultural importance in much of the world. Recently, grafting techniques have been applied to increase productivity and quality in the sector, however, the process to find rootstock cultivars that are compatible with vine grafts is essentially experimental, slow and expensive. Although the use of machine learning in Agribusiness is not new, the literature lacks works that demonstrate the applicability of this technique to specifically support grafting processes. This work, through a Recommendation System perspective, offers a comparison between pre- diction and classification approaches to the problem of scion and rootstock cultivar selection. Furthermore, it also evaluates the performance of algorithms based on collaborative filtering with those of algorithms based on Kernel methods, for rating prediction and interaction clas- sification tasks. In all, 17 models based on collaborative filtering and kernel methods were evaluated on a dataset of 251 labeled interactions, reaching a maximum value of 96% for the f1-score metric. The results indicated a significant advantage for the classification approach, especially for kernel-based models, as well as the feasibility of a decision support tool to guide specialist choices of the best cultivars for grafting.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalAprendizagem de máquinaPredição de compatibilidade entre cultivares em processos de enxertia : um estudo comparativo de técnicas baseadas em sistemas de recomendaçãoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/47653/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/47653/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53ORIGINALDISSERTAÇÃO Thiago Batista Rodrigues Silva.pdfDISSERTAÇÃO Thiago Batista Rodrigues Silva.pdfapplication/pdf2670779https://repositorio.ufpe.br/bitstream/123456789/47653/1/DISSERTA%c3%87%c3%83O%20Thiago%20Batista%20Rodrigues%20Silva.pdfb8c66d2e19a1ddb80885bb38db1ea8d1MD51TEXTDISSERTAÇÃO Thiago Batista Rodrigues Silva.pdf.txtDISSERTAÇÃO Thiago Batista Rodrigues Silva.pdf.txtExtracted texttext/plain106728https://repositorio.ufpe.br/bitstream/123456789/47653/4/DISSERTA%c3%87%c3%83O%20Thiago%20Batista%20Rodrigues%20Silva.pdf.txt8a34520e22f3d88b3510be9b8f1ae4a7MD54THUMBNAILDISSERTAÇÃO Thiago Batista Rodrigues Silva.pdf.jpgDISSERTAÇÃO Thiago Batista Rodrigues Silva.pdf.jpgGenerated Thumbnailimage/jpeg1222https://repositorio.ufpe.br/bitstream/123456789/47653/5/DISSERTA%c3%87%c3%83O%20Thiago%20Batista%20Rodrigues%20Silva.pdf.jpg016d67571be709f812a5a1af0da038c0MD55123456789/476532022-11-18 02:19:10.187oai:repositorio.ufpe.br:123456789/47653VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-11-18T05:19:10Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Predição de compatibilidade entre cultivares em processos de enxertia : um estudo comparativo de técnicas baseadas em sistemas de recomendação |
title |
Predição de compatibilidade entre cultivares em processos de enxertia : um estudo comparativo de técnicas baseadas em sistemas de recomendação |
spellingShingle |
Predição de compatibilidade entre cultivares em processos de enxertia : um estudo comparativo de técnicas baseadas em sistemas de recomendação SILVA, Thiago Batista Rodrigues Inteligência computacional Aprendizagem de máquina |
title_short |
Predição de compatibilidade entre cultivares em processos de enxertia : um estudo comparativo de técnicas baseadas em sistemas de recomendação |
title_full |
Predição de compatibilidade entre cultivares em processos de enxertia : um estudo comparativo de técnicas baseadas em sistemas de recomendação |
title_fullStr |
Predição de compatibilidade entre cultivares em processos de enxertia : um estudo comparativo de técnicas baseadas em sistemas de recomendação |
title_full_unstemmed |
Predição de compatibilidade entre cultivares em processos de enxertia : um estudo comparativo de técnicas baseadas em sistemas de recomendação |
title_sort |
Predição de compatibilidade entre cultivares em processos de enxertia : um estudo comparativo de técnicas baseadas em sistemas de recomendação |
author |
SILVA, Thiago Batista Rodrigues |
author_facet |
SILVA, Thiago Batista Rodrigues |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7228187527181412 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/2984888073123287 |
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0622594061462533 |
dc.contributor.author.fl_str_mv |
SILVA, Thiago Batista Rodrigues |
dc.contributor.advisor1.fl_str_mv |
PRUDÊNCIO, Ricardo Bastos Cavalcante |
dc.contributor.advisor-co1.fl_str_mv |
NASCIMENTO, André Câmara Alves do |
contributor_str_mv |
PRUDÊNCIO, Ricardo Bastos Cavalcante NASCIMENTO, André Câmara Alves do |
dc.subject.por.fl_str_mv |
Inteligência computacional Aprendizagem de máquina |
topic |
Inteligência computacional Aprendizagem de máquina |
description |
A viticultura é a ciência que estuda o cultivo da uva para produção de sucos, vinhos e outros derivados. Tanto os produtos quanto a cadeia produtiva possuem elevada importância soci- oeconômica e cultural em grande parte do mundo. Recentemente, técnicas de enxertia vêm sendo aplicadas para aumentar a produtividade e a qualidade no setor, no entanto, o processo para encontrar cultivares de porta-enxerto que sejam compatíveis com enxertos de videiras é essencialmente experimental, lento e custoso. Embora a utilização de aprendizagem de má- quina no Agronegócio não seja novidade, a literatura carece de trabalhos que demonstrem a aplicabilidade dessa técnica para apoiar especificamente processos de enxertia. Este trabalho, por meio de uma perspectiva de Sistema de Recomendação, oferece uma comparação entre abordagens de predição e de classificação para o problema da seleção de cultivares de enxerto e porta-enxerto. Além disso, também avalia os desempenhos de algoritmos baseados em fil- tragem colaborativa com os de algoritmos baseados em métodos de Kernel, para as tarefas de predição de ratings e de classificação de interações. Ao todo, 17 modelos baseados em algoritmos de filtragem colaborativa e métodos de kernel foram avaliados em um conjunto de dados de 251 interações rotuladas, atingindo o valor máximo de 96% para a métrica f1-score. Os resultados indicaram uma vantagem significativa para a abordagem de classificação, espe- cialmente para os modelos baseados em kernel, bem como a viabilidade de uma ferramenta de apoio à decisão para orientar as escolhas de especialistas das melhores cultivares para enxertia. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-11-17T14:41:04Z |
dc.date.available.fl_str_mv |
2022-11-17T14:41:04Z |
dc.date.issued.fl_str_mv |
2022-08-12 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Thiago Batista Rodrigues. Predição de compatibilidade entre cultivares em processos de enxertia: um estudo comparativo de técnicas baseadas em sistemas de recomendação. 2022. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/47653 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000g4s7 |
identifier_str_mv |
SILVA, Thiago Batista Rodrigues. Predição de compatibilidade entre cultivares em processos de enxertia: um estudo comparativo de técnicas baseadas em sistemas de recomendação. 2022. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2022. ark:/64986/001300000g4s7 |
url |
https://repositorio.ufpe.br/handle/123456789/47653 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/47653/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/47653/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/47653/1/DISSERTA%c3%87%c3%83O%20Thiago%20Batista%20Rodrigues%20Silva.pdf https://repositorio.ufpe.br/bitstream/123456789/47653/4/DISSERTA%c3%87%c3%83O%20Thiago%20Batista%20Rodrigues%20Silva.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/47653/5/DISSERTA%c3%87%c3%83O%20Thiago%20Batista%20Rodrigues%20Silva.pdf.jpg |
bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 b8c66d2e19a1ddb80885bb38db1ea8d1 8a34520e22f3d88b3510be9b8f1ae4a7 016d67571be709f812a5a1af0da038c0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172815149596672 |