Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas

Detalhes bibliográficos
Autor(a) principal: Silva, Styve Stallone da
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000014mf7
Texto Completo: https://repositorio.ufpe.br/handle/123456789/11840
Resumo: A segmentação de imagens tem por objetivo separar os objetos de interesse de determinado estudo em uma imagem. A segmentação da imagem deve parar quando os objetos procurados tiverem sido isolados. Por exemplo, na segmentação de uma imagem de transito, onde se deseja identificar as placas dos carros, é necessário segmentar a imagem separando todos os carros do restante da imagem, e ainda separar as placas dos carros para realizar o processo de identificação de cada placa. O processo de segmentação de imagens tem grande importância na análise e descrição de imagens, pois essa divisão, realizada na imagem, é responsável pelo sucesso de outras técnicas como detecção de pessoas e reconhecimento de faces. Atualmente, métodos de segmentação do campo de jogo em vídeos de futebol têm sido bastante explorados. O interesse em analisar e classificar eventos em vídeos, além das dificuldades atreladas às variações de clima e iluminação que se refletem na segmentação de campo, tem gerado grande interesse em desenvolver métodos que consigam realizar a segmentação mesmo com os problemas anteriormente citados. A segmentação do campo é o passo fundamental para a análise de diversos tipos de eventos em um vídeo de jogo de futebol, que podem ser detectados e classificados automaticamente, como gols, faltas e escanteios. Muitos métodos de segmentação de campo têm utilizado apenas as características das cores do gramado, porém as tonalidades dessas cores variam, evidenciando fraquezes desses métodos. O trabalho apresentado propõe um método de segmentação baseado em combinação de misturas gaussianas e rede neural, utilizando características de cores e também características de texturas da imagem. O referido método é composto pelas etapas de extração de características, agrupamento dos dados, segmentação, classificação e pósprocessamento. Como métricas de comparação de resultados são utilizadas curvas receiver operating characteristic (ROC) e taxas de verdadeiros e falsos positivos. Os resultados do modelo proposto são comparados a modelos gaussianos únicos, algoritmo k-Nearest Neighbor (k-NN) e ao algoritmo Fuzzy C-means (FCM), apresentando resultado de 94,25% de acerto para testes com diversas variações climáticas e de iluminação. O resultado foi superior aos outros algoritmos analisados.
id UFPE_6290259abd2a90603f434a3fb24a6c4e
oai_identifier_str oai:repositorio.ufpe.br:123456789/11840
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Silva, Styve Stallone daRen, Tsang Ing Cavalcanti, George Darmiton da Cunha 2015-03-10T19:43:01Z2015-03-10T19:43:01Z2014-02-28https://repositorio.ufpe.br/handle/123456789/11840ark:/64986/0013000014mf7A segmentação de imagens tem por objetivo separar os objetos de interesse de determinado estudo em uma imagem. A segmentação da imagem deve parar quando os objetos procurados tiverem sido isolados. Por exemplo, na segmentação de uma imagem de transito, onde se deseja identificar as placas dos carros, é necessário segmentar a imagem separando todos os carros do restante da imagem, e ainda separar as placas dos carros para realizar o processo de identificação de cada placa. O processo de segmentação de imagens tem grande importância na análise e descrição de imagens, pois essa divisão, realizada na imagem, é responsável pelo sucesso de outras técnicas como detecção de pessoas e reconhecimento de faces. Atualmente, métodos de segmentação do campo de jogo em vídeos de futebol têm sido bastante explorados. O interesse em analisar e classificar eventos em vídeos, além das dificuldades atreladas às variações de clima e iluminação que se refletem na segmentação de campo, tem gerado grande interesse em desenvolver métodos que consigam realizar a segmentação mesmo com os problemas anteriormente citados. A segmentação do campo é o passo fundamental para a análise de diversos tipos de eventos em um vídeo de jogo de futebol, que podem ser detectados e classificados automaticamente, como gols, faltas e escanteios. Muitos métodos de segmentação de campo têm utilizado apenas as características das cores do gramado, porém as tonalidades dessas cores variam, evidenciando fraquezes desses métodos. O trabalho apresentado propõe um método de segmentação baseado em combinação de misturas gaussianas e rede neural, utilizando características de cores e também características de texturas da imagem. O referido método é composto pelas etapas de extração de características, agrupamento dos dados, segmentação, classificação e pósprocessamento. Como métricas de comparação de resultados são utilizadas curvas receiver operating characteristic (ROC) e taxas de verdadeiros e falsos positivos. Os resultados do modelo proposto são comparados a modelos gaussianos únicos, algoritmo k-Nearest Neighbor (k-NN) e ao algoritmo Fuzzy C-means (FCM), apresentando resultado de 94,25% de acerto para testes com diversas variações climáticas e de iluminação. O resultado foi superior aos outros algoritmos analisados.porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSegmentaçãoTexturaRedes neuraisResilient propagationModelos de misturas gaussianasSegmentação de imagens utilizando combinação de modelos de misturas Gaussianasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Styve Stallone da Silva.pdf.jpgDISSERTAÇÃO Styve Stallone da Silva.pdf.jpgGenerated Thumbnailimage/jpeg1293https://repositorio.ufpe.br/bitstream/123456789/11840/5/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf.jpg4a910374047099f16a31073485037654MD55ORIGINALDISSERTAÇÃO Styve Stallone da Silva.pdfDISSERTAÇÃO Styve Stallone da Silva.pdfDissertação de mestradoapplication/pdf3737470https://repositorio.ufpe.br/bitstream/123456789/11840/1/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf8b378e7a672e171ffc58dd1435b637ecMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/11840/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/11840/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Styve Stallone da Silva.pdf.txtDISSERTAÇÃO Styve Stallone da Silva.pdf.txtExtracted texttext/plain137802https://repositorio.ufpe.br/bitstream/123456789/11840/4/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf.txt99274eb034ed003738d9075fb35eaa0bMD54123456789/118402019-10-25 04:47:37.611oai:repositorio.ufpe.br:123456789/11840TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:47:37Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas
title Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas
spellingShingle Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas
Silva, Styve Stallone da
Segmentação
Textura
Redes neurais
Resilient propagation
Modelos de misturas gaussianas
title_short Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas
title_full Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas
title_fullStr Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas
title_full_unstemmed Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas
title_sort Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas
author Silva, Styve Stallone da
author_facet Silva, Styve Stallone da
author_role author
dc.contributor.author.fl_str_mv Silva, Styve Stallone da
dc.contributor.advisor1.fl_str_mv Ren, Tsang Ing
dc.contributor.advisor-co1.fl_str_mv Cavalcanti, George Darmiton da Cunha
contributor_str_mv Ren, Tsang Ing
Cavalcanti, George Darmiton da Cunha
dc.subject.por.fl_str_mv Segmentação
Textura
Redes neurais
Resilient propagation
Modelos de misturas gaussianas
topic Segmentação
Textura
Redes neurais
Resilient propagation
Modelos de misturas gaussianas
description A segmentação de imagens tem por objetivo separar os objetos de interesse de determinado estudo em uma imagem. A segmentação da imagem deve parar quando os objetos procurados tiverem sido isolados. Por exemplo, na segmentação de uma imagem de transito, onde se deseja identificar as placas dos carros, é necessário segmentar a imagem separando todos os carros do restante da imagem, e ainda separar as placas dos carros para realizar o processo de identificação de cada placa. O processo de segmentação de imagens tem grande importância na análise e descrição de imagens, pois essa divisão, realizada na imagem, é responsável pelo sucesso de outras técnicas como detecção de pessoas e reconhecimento de faces. Atualmente, métodos de segmentação do campo de jogo em vídeos de futebol têm sido bastante explorados. O interesse em analisar e classificar eventos em vídeos, além das dificuldades atreladas às variações de clima e iluminação que se refletem na segmentação de campo, tem gerado grande interesse em desenvolver métodos que consigam realizar a segmentação mesmo com os problemas anteriormente citados. A segmentação do campo é o passo fundamental para a análise de diversos tipos de eventos em um vídeo de jogo de futebol, que podem ser detectados e classificados automaticamente, como gols, faltas e escanteios. Muitos métodos de segmentação de campo têm utilizado apenas as características das cores do gramado, porém as tonalidades dessas cores variam, evidenciando fraquezes desses métodos. O trabalho apresentado propõe um método de segmentação baseado em combinação de misturas gaussianas e rede neural, utilizando características de cores e também características de texturas da imagem. O referido método é composto pelas etapas de extração de características, agrupamento dos dados, segmentação, classificação e pósprocessamento. Como métricas de comparação de resultados são utilizadas curvas receiver operating characteristic (ROC) e taxas de verdadeiros e falsos positivos. Os resultados do modelo proposto são comparados a modelos gaussianos únicos, algoritmo k-Nearest Neighbor (k-NN) e ao algoritmo Fuzzy C-means (FCM), apresentando resultado de 94,25% de acerto para testes com diversas variações climáticas e de iluminação. O resultado foi superior aos outros algoritmos analisados.
publishDate 2014
dc.date.issued.fl_str_mv 2014-02-28
dc.date.accessioned.fl_str_mv 2015-03-10T19:43:01Z
dc.date.available.fl_str_mv 2015-03-10T19:43:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/11840
dc.identifier.dark.fl_str_mv ark:/64986/0013000014mf7
url https://repositorio.ufpe.br/handle/123456789/11840
identifier_str_mv ark:/64986/0013000014mf7
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/11840/5/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/11840/1/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf
https://repositorio.ufpe.br/bitstream/123456789/11840/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/11840/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/11840/4/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf.txt
bitstream.checksum.fl_str_mv 4a910374047099f16a31073485037654
8b378e7a672e171ffc58dd1435b637ec
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
99274eb034ed003738d9075fb35eaa0b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815173001684975616