Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000014mf7 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/11840 |
Resumo: | A segmentação de imagens tem por objetivo separar os objetos de interesse de determinado estudo em uma imagem. A segmentação da imagem deve parar quando os objetos procurados tiverem sido isolados. Por exemplo, na segmentação de uma imagem de transito, onde se deseja identificar as placas dos carros, é necessário segmentar a imagem separando todos os carros do restante da imagem, e ainda separar as placas dos carros para realizar o processo de identificação de cada placa. O processo de segmentação de imagens tem grande importância na análise e descrição de imagens, pois essa divisão, realizada na imagem, é responsável pelo sucesso de outras técnicas como detecção de pessoas e reconhecimento de faces. Atualmente, métodos de segmentação do campo de jogo em vídeos de futebol têm sido bastante explorados. O interesse em analisar e classificar eventos em vídeos, além das dificuldades atreladas às variações de clima e iluminação que se refletem na segmentação de campo, tem gerado grande interesse em desenvolver métodos que consigam realizar a segmentação mesmo com os problemas anteriormente citados. A segmentação do campo é o passo fundamental para a análise de diversos tipos de eventos em um vídeo de jogo de futebol, que podem ser detectados e classificados automaticamente, como gols, faltas e escanteios. Muitos métodos de segmentação de campo têm utilizado apenas as características das cores do gramado, porém as tonalidades dessas cores variam, evidenciando fraquezes desses métodos. O trabalho apresentado propõe um método de segmentação baseado em combinação de misturas gaussianas e rede neural, utilizando características de cores e também características de texturas da imagem. O referido método é composto pelas etapas de extração de características, agrupamento dos dados, segmentação, classificação e pósprocessamento. Como métricas de comparação de resultados são utilizadas curvas receiver operating characteristic (ROC) e taxas de verdadeiros e falsos positivos. Os resultados do modelo proposto são comparados a modelos gaussianos únicos, algoritmo k-Nearest Neighbor (k-NN) e ao algoritmo Fuzzy C-means (FCM), apresentando resultado de 94,25% de acerto para testes com diversas variações climáticas e de iluminação. O resultado foi superior aos outros algoritmos analisados. |
id |
UFPE_6290259abd2a90603f434a3fb24a6c4e |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/11840 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Silva, Styve Stallone daRen, Tsang Ing Cavalcanti, George Darmiton da Cunha 2015-03-10T19:43:01Z2015-03-10T19:43:01Z2014-02-28https://repositorio.ufpe.br/handle/123456789/11840ark:/64986/0013000014mf7A segmentação de imagens tem por objetivo separar os objetos de interesse de determinado estudo em uma imagem. A segmentação da imagem deve parar quando os objetos procurados tiverem sido isolados. Por exemplo, na segmentação de uma imagem de transito, onde se deseja identificar as placas dos carros, é necessário segmentar a imagem separando todos os carros do restante da imagem, e ainda separar as placas dos carros para realizar o processo de identificação de cada placa. O processo de segmentação de imagens tem grande importância na análise e descrição de imagens, pois essa divisão, realizada na imagem, é responsável pelo sucesso de outras técnicas como detecção de pessoas e reconhecimento de faces. Atualmente, métodos de segmentação do campo de jogo em vídeos de futebol têm sido bastante explorados. O interesse em analisar e classificar eventos em vídeos, além das dificuldades atreladas às variações de clima e iluminação que se refletem na segmentação de campo, tem gerado grande interesse em desenvolver métodos que consigam realizar a segmentação mesmo com os problemas anteriormente citados. A segmentação do campo é o passo fundamental para a análise de diversos tipos de eventos em um vídeo de jogo de futebol, que podem ser detectados e classificados automaticamente, como gols, faltas e escanteios. Muitos métodos de segmentação de campo têm utilizado apenas as características das cores do gramado, porém as tonalidades dessas cores variam, evidenciando fraquezes desses métodos. O trabalho apresentado propõe um método de segmentação baseado em combinação de misturas gaussianas e rede neural, utilizando características de cores e também características de texturas da imagem. O referido método é composto pelas etapas de extração de características, agrupamento dos dados, segmentação, classificação e pósprocessamento. Como métricas de comparação de resultados são utilizadas curvas receiver operating characteristic (ROC) e taxas de verdadeiros e falsos positivos. Os resultados do modelo proposto são comparados a modelos gaussianos únicos, algoritmo k-Nearest Neighbor (k-NN) e ao algoritmo Fuzzy C-means (FCM), apresentando resultado de 94,25% de acerto para testes com diversas variações climáticas e de iluminação. O resultado foi superior aos outros algoritmos analisados.porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSegmentaçãoTexturaRedes neuraisResilient propagationModelos de misturas gaussianasSegmentação de imagens utilizando combinação de modelos de misturas Gaussianasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Styve Stallone da Silva.pdf.jpgDISSERTAÇÃO Styve Stallone da Silva.pdf.jpgGenerated Thumbnailimage/jpeg1293https://repositorio.ufpe.br/bitstream/123456789/11840/5/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf.jpg4a910374047099f16a31073485037654MD55ORIGINALDISSERTAÇÃO Styve Stallone da Silva.pdfDISSERTAÇÃO Styve Stallone da Silva.pdfDissertação de mestradoapplication/pdf3737470https://repositorio.ufpe.br/bitstream/123456789/11840/1/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf8b378e7a672e171ffc58dd1435b637ecMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/11840/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/11840/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Styve Stallone da Silva.pdf.txtDISSERTAÇÃO Styve Stallone da Silva.pdf.txtExtracted texttext/plain137802https://repositorio.ufpe.br/bitstream/123456789/11840/4/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf.txt99274eb034ed003738d9075fb35eaa0bMD54123456789/118402019-10-25 04:47:37.611oai:repositorio.ufpe.br:123456789/11840TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:47:37Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas |
title |
Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas |
spellingShingle |
Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas Silva, Styve Stallone da Segmentação Textura Redes neurais Resilient propagation Modelos de misturas gaussianas |
title_short |
Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas |
title_full |
Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas |
title_fullStr |
Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas |
title_full_unstemmed |
Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas |
title_sort |
Segmentação de imagens utilizando combinação de modelos de misturas Gaussianas |
author |
Silva, Styve Stallone da |
author_facet |
Silva, Styve Stallone da |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Styve Stallone da |
dc.contributor.advisor1.fl_str_mv |
Ren, Tsang Ing |
dc.contributor.advisor-co1.fl_str_mv |
Cavalcanti, George Darmiton da Cunha |
contributor_str_mv |
Ren, Tsang Ing Cavalcanti, George Darmiton da Cunha |
dc.subject.por.fl_str_mv |
Segmentação Textura Redes neurais Resilient propagation Modelos de misturas gaussianas |
topic |
Segmentação Textura Redes neurais Resilient propagation Modelos de misturas gaussianas |
description |
A segmentação de imagens tem por objetivo separar os objetos de interesse de determinado estudo em uma imagem. A segmentação da imagem deve parar quando os objetos procurados tiverem sido isolados. Por exemplo, na segmentação de uma imagem de transito, onde se deseja identificar as placas dos carros, é necessário segmentar a imagem separando todos os carros do restante da imagem, e ainda separar as placas dos carros para realizar o processo de identificação de cada placa. O processo de segmentação de imagens tem grande importância na análise e descrição de imagens, pois essa divisão, realizada na imagem, é responsável pelo sucesso de outras técnicas como detecção de pessoas e reconhecimento de faces. Atualmente, métodos de segmentação do campo de jogo em vídeos de futebol têm sido bastante explorados. O interesse em analisar e classificar eventos em vídeos, além das dificuldades atreladas às variações de clima e iluminação que se refletem na segmentação de campo, tem gerado grande interesse em desenvolver métodos que consigam realizar a segmentação mesmo com os problemas anteriormente citados. A segmentação do campo é o passo fundamental para a análise de diversos tipos de eventos em um vídeo de jogo de futebol, que podem ser detectados e classificados automaticamente, como gols, faltas e escanteios. Muitos métodos de segmentação de campo têm utilizado apenas as características das cores do gramado, porém as tonalidades dessas cores variam, evidenciando fraquezes desses métodos. O trabalho apresentado propõe um método de segmentação baseado em combinação de misturas gaussianas e rede neural, utilizando características de cores e também características de texturas da imagem. O referido método é composto pelas etapas de extração de características, agrupamento dos dados, segmentação, classificação e pósprocessamento. Como métricas de comparação de resultados são utilizadas curvas receiver operating characteristic (ROC) e taxas de verdadeiros e falsos positivos. Os resultados do modelo proposto são comparados a modelos gaussianos únicos, algoritmo k-Nearest Neighbor (k-NN) e ao algoritmo Fuzzy C-means (FCM), apresentando resultado de 94,25% de acerto para testes com diversas variações climáticas e de iluminação. O resultado foi superior aos outros algoritmos analisados. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-02-28 |
dc.date.accessioned.fl_str_mv |
2015-03-10T19:43:01Z |
dc.date.available.fl_str_mv |
2015-03-10T19:43:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/11840 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000014mf7 |
url |
https://repositorio.ufpe.br/handle/123456789/11840 |
identifier_str_mv |
ark:/64986/0013000014mf7 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/11840/5/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/11840/1/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf https://repositorio.ufpe.br/bitstream/123456789/11840/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/11840/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/11840/4/DISSERTA%c3%87%c3%83O%20Styve%20Stallone%20da%20Silva.pdf.txt |
bitstream.checksum.fl_str_mv |
4a910374047099f16a31073485037654 8b378e7a672e171ffc58dd1435b637ec 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 99274eb034ed003738d9075fb35eaa0b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815173001684975616 |