Additive margin softmax e funções sinc para reconhecimento de locutor
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000qmhb |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/38295 |
Resumo: | Reconhecimento de locutor é uma tarefa desafiante com aplicações em diversas áreas, como autenticação, automação e segurança. O SincNet é um novo modelo baseado em aprendizado profundo (deep learning) com resultados promissores para tarefa de reconhecimento de locutor. Um fator crucial no treinamento de modelos de deep learning é a função de ativação utilizada, que possui impacto direto no desempenho do modelo treinado. A função de ativação Softmax é amplamente utilizada neste contexto, principalmente em problemas de classificação. Entretando, em alguns tipos de problemas, como por exemplo o reconhecimento facial, a amsoftmax tem apresentado resultados significativos quando comparados à versão tradicional do Softmax. A amsoftmax é uma nova função de ativação baseada na Softmax que introduz uma margem de separação aditiva entre as classes mapeadas. A margem de separação aditiva força as amostras da mesma classe a ficarem mais próximas umas das outras enquanto maximiza a distância de amostras de classes distintas. Neste trabalho foram propostas variações de modelos tradicionais considerando componentes como amsoftmax e as camadas sinc do modelo SincNet para o problema de reconhecimento de locutor. Dentre os modelos propostos se destacam o amsincnet e o AM-MobileNet1D. O amsincnet é um modelo baseado no SincNet que usa a função de ativação amsoftmax, e com isso foi possível obter um erro de classificação 55% menor que o obtido pelo SincNet tradicional nas bases de dados TIMIT e MIT, sem aumento significativo na complexidade do modelo. O AM-MobileNet1D é uma versão da rede MobileNet V2 adaptada para trabalhar com sinais de áudio, que apresentou resultados até sete vezes mais rápidos que o modelo base SincNet, sem prejuízo no desempenho do modelo. |
id |
UFPE_64f759f16e9ca2327e94c72df7b68f79 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/38295 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
NUNES, João Antônio Chagashttp://lattes.cnpq.br/5134397331258110http://lattes.cnpq.br/1244195230407619ZANCHETTIN, Cleber2020-10-07T22:19:51Z2020-10-07T22:19:51Z2020-03-02NUNES, João Antônio Chagas. Additive margin softmax e funções sinc para reconhecimento de locutor. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38295ark:/64986/001300000qmhbReconhecimento de locutor é uma tarefa desafiante com aplicações em diversas áreas, como autenticação, automação e segurança. O SincNet é um novo modelo baseado em aprendizado profundo (deep learning) com resultados promissores para tarefa de reconhecimento de locutor. Um fator crucial no treinamento de modelos de deep learning é a função de ativação utilizada, que possui impacto direto no desempenho do modelo treinado. A função de ativação Softmax é amplamente utilizada neste contexto, principalmente em problemas de classificação. Entretando, em alguns tipos de problemas, como por exemplo o reconhecimento facial, a amsoftmax tem apresentado resultados significativos quando comparados à versão tradicional do Softmax. A amsoftmax é uma nova função de ativação baseada na Softmax que introduz uma margem de separação aditiva entre as classes mapeadas. A margem de separação aditiva força as amostras da mesma classe a ficarem mais próximas umas das outras enquanto maximiza a distância de amostras de classes distintas. Neste trabalho foram propostas variações de modelos tradicionais considerando componentes como amsoftmax e as camadas sinc do modelo SincNet para o problema de reconhecimento de locutor. Dentre os modelos propostos se destacam o amsincnet e o AM-MobileNet1D. O amsincnet é um modelo baseado no SincNet que usa a função de ativação amsoftmax, e com isso foi possível obter um erro de classificação 55% menor que o obtido pelo SincNet tradicional nas bases de dados TIMIT e MIT, sem aumento significativo na complexidade do modelo. O AM-MobileNet1D é uma versão da rede MobileNet V2 adaptada para trabalhar com sinais de áudio, que apresentou resultados até sete vezes mais rápidos que o modelo base SincNet, sem prejuízo no desempenho do modelo.CNPqSpeaker Recognition is a challenging task with essential applications such as authentication, automation, and security. SincNet is a new deep learning based model which has produced promising results to tackle the mentioned task. To train deep learning systems, the activation function on the final layer is essential to the network performance. The Softmax activation function is a widely used function in deep learning methods, but it is not the best choice for all kind of problems. For distance-based problems, one new Softmax based activation function called Additive Margin Softmax (AM-Softmax) is proving to be a better choice than the traditional Softmax. The AM-Softmax introduces a margin of separation between the classes that forces the samples from the same class to be closer to each other and also maximizes the distance between classes. In this paper, we proposed several deep learning models to tackle the speaker recognition problem. In addition, it was made several experiments to analyse the influence of the AM-Softmax function and the Sinc layer on the speaker recognition problem. Among the proposed models, the AM-SincNet and the AM-MobileNet1D had promissing results. The proposed AMSincNet model is based on the SincNet but uses an improved AM-Softmax layer, it had shown a classification error about 55% smaller than the tradicional SincNet model on the datasets TIMIT and MIT. On the other hand, the AM-MobileNet1D is an adapted version of MobileNet V2 built to deal with audio signals, it had shown results up to 7 times faster than the SincNet, while keeping low error rates.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalReconhecimento de locutorAdditive margin softmax e funções sinc para reconhecimento de locutorinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPELICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/38295/3/license.txtbd573a5ca8288eb7272482765f819534MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/38295/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALDISSERTAÇÃO João Antônio Chagas Nunes.pdfDISSERTAÇÃO João Antônio Chagas Nunes.pdfapplication/pdf3598723https://repositorio.ufpe.br/bitstream/123456789/38295/1/DISSERTA%c3%87%c3%83O%20Jo%c3%a3o%20Ant%c3%b4nio%20Chagas%20Nunes.pdf17485eb6ead1e22c8a12b84cff33bb99MD51TEXTDISSERTAÇÃO João Antônio Chagas Nunes.pdf.txtDISSERTAÇÃO João Antônio Chagas Nunes.pdf.txtExtracted texttext/plain170877https://repositorio.ufpe.br/bitstream/123456789/38295/4/DISSERTA%c3%87%c3%83O%20Jo%c3%a3o%20Ant%c3%b4nio%20Chagas%20Nunes.pdf.txt3fbcfbff3aac3380548742c8fbfa693fMD54THUMBNAILDISSERTAÇÃO João Antônio Chagas Nunes.pdf.jpgDISSERTAÇÃO João Antônio Chagas Nunes.pdf.jpgGenerated Thumbnailimage/jpeg1267https://repositorio.ufpe.br/bitstream/123456789/38295/5/DISSERTA%c3%87%c3%83O%20Jo%c3%a3o%20Ant%c3%b4nio%20Chagas%20Nunes.pdf.jpg909967bf17c6aae6ce10aad49f6c5247MD55123456789/382952020-10-08 02:11:02.11oai:repositorio.ufpe.br:123456789/38295TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-10-08T05:11:02Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Additive margin softmax e funções sinc para reconhecimento de locutor |
title |
Additive margin softmax e funções sinc para reconhecimento de locutor |
spellingShingle |
Additive margin softmax e funções sinc para reconhecimento de locutor NUNES, João Antônio Chagas Inteligência computacional Reconhecimento de locutor |
title_short |
Additive margin softmax e funções sinc para reconhecimento de locutor |
title_full |
Additive margin softmax e funções sinc para reconhecimento de locutor |
title_fullStr |
Additive margin softmax e funções sinc para reconhecimento de locutor |
title_full_unstemmed |
Additive margin softmax e funções sinc para reconhecimento de locutor |
title_sort |
Additive margin softmax e funções sinc para reconhecimento de locutor |
author |
NUNES, João Antônio Chagas |
author_facet |
NUNES, João Antônio Chagas |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5134397331258110 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/1244195230407619 |
dc.contributor.author.fl_str_mv |
NUNES, João Antônio Chagas |
dc.contributor.advisor1.fl_str_mv |
ZANCHETTIN, Cleber |
contributor_str_mv |
ZANCHETTIN, Cleber |
dc.subject.por.fl_str_mv |
Inteligência computacional Reconhecimento de locutor |
topic |
Inteligência computacional Reconhecimento de locutor |
description |
Reconhecimento de locutor é uma tarefa desafiante com aplicações em diversas áreas, como autenticação, automação e segurança. O SincNet é um novo modelo baseado em aprendizado profundo (deep learning) com resultados promissores para tarefa de reconhecimento de locutor. Um fator crucial no treinamento de modelos de deep learning é a função de ativação utilizada, que possui impacto direto no desempenho do modelo treinado. A função de ativação Softmax é amplamente utilizada neste contexto, principalmente em problemas de classificação. Entretando, em alguns tipos de problemas, como por exemplo o reconhecimento facial, a amsoftmax tem apresentado resultados significativos quando comparados à versão tradicional do Softmax. A amsoftmax é uma nova função de ativação baseada na Softmax que introduz uma margem de separação aditiva entre as classes mapeadas. A margem de separação aditiva força as amostras da mesma classe a ficarem mais próximas umas das outras enquanto maximiza a distância de amostras de classes distintas. Neste trabalho foram propostas variações de modelos tradicionais considerando componentes como amsoftmax e as camadas sinc do modelo SincNet para o problema de reconhecimento de locutor. Dentre os modelos propostos se destacam o amsincnet e o AM-MobileNet1D. O amsincnet é um modelo baseado no SincNet que usa a função de ativação amsoftmax, e com isso foi possível obter um erro de classificação 55% menor que o obtido pelo SincNet tradicional nas bases de dados TIMIT e MIT, sem aumento significativo na complexidade do modelo. O AM-MobileNet1D é uma versão da rede MobileNet V2 adaptada para trabalhar com sinais de áudio, que apresentou resultados até sete vezes mais rápidos que o modelo base SincNet, sem prejuízo no desempenho do modelo. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-10-07T22:19:51Z |
dc.date.available.fl_str_mv |
2020-10-07T22:19:51Z |
dc.date.issued.fl_str_mv |
2020-03-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
NUNES, João Antônio Chagas. Additive margin softmax e funções sinc para reconhecimento de locutor. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/38295 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000qmhb |
identifier_str_mv |
NUNES, João Antônio Chagas. Additive margin softmax e funções sinc para reconhecimento de locutor. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020. ark:/64986/001300000qmhb |
url |
https://repositorio.ufpe.br/handle/123456789/38295 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/38295/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/38295/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/38295/1/DISSERTA%c3%87%c3%83O%20Jo%c3%a3o%20Ant%c3%b4nio%20Chagas%20Nunes.pdf https://repositorio.ufpe.br/bitstream/123456789/38295/4/DISSERTA%c3%87%c3%83O%20Jo%c3%a3o%20Ant%c3%b4nio%20Chagas%20Nunes.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/38295/5/DISSERTA%c3%87%c3%83O%20Jo%c3%a3o%20Ant%c3%b4nio%20Chagas%20Nunes.pdf.jpg |
bitstream.checksum.fl_str_mv |
bd573a5ca8288eb7272482765f819534 e39d27027a6cc9cb039ad269a5db8e34 17485eb6ead1e22c8a12b84cff33bb99 3fbcfbff3aac3380548742c8fbfa693f 909967bf17c6aae6ce10aad49f6c5247 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172887137484800 |