Proposta de técnica de localização interna para dispositivos móveis utilizando redes locais sem fio

Detalhes bibliográficos
Autor(a) principal: BARROS, Antônio Carlos Genn de Assunção
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000002dtx
Texto Completo: https://repositorio.ufpe.br/handle/123456789/21013
Resumo: Atualmente as redes locais sem fio (WLANs) em ambientes internos estão presentes na maioria dos prédios públicos. Estas redes, além da sua função principal, podem ser utilizadas para localização de pessoas e objetos, salientando que nestes ambientes não é adequada a utilização do sinal de GPS para esta finalidade. Diversos estudos e pesquisas nesta área têm sido realizados. Serviços baseados na localização interna possuem inúmeras aplicações nas áreas de segurança, médica, monitoramento, navegação, auxílio a deficientes, gerenciamento de pessoas, entre outras e hoje já movimentam um mercado de US$1 Bilhão. Com a proliferação da Internet das Coisas (IoT), estes valores serão ainda maiores. Os sistemas de localização interna utilizam tecnologias como Ultrassom, Infravermelho, RFID, Bluetooth e WLAN, variando conforme a precisão, exatidão, custo, velocidade de resposta, infraestrutura e aplicação. O presente trabalho propõe uma técnica de localização interna que utiliza a intensidade do sinal recebido (RSS — Received Signal Strength) das redes WLAN presentes como medida para localização. Na técnica proposta, é feito inicialmente um mapeamento das intensidades dos sinais da WLANs existentes. Estes valores são classificados através de um Algoritmo de Agrupamento (clustering) e, posteriormente, são aplicados, a cada agrupamento, algoritmos de regressão para o cálculo da localização. Associada a estas técnicas são aplicados filtros visando minimizar as variações do sinal medido decorrentes de interferências do meio. Esta técnica não necessita de grandes esforços de calibração nem alterações na estrutura existente, apenas utilizando a rede WLAN já instalada, obtendo assim uma precisão compatível com aplicações de localização de pessoas e objetos e auxílio em navegação em ambientes internos. Na implementação e testes da técnica proposta, foi empregado o processador Edison da Intel para a coleta das intensidades dos sinais — RSS e como plataforma de servidor foi utilizada a estrutura de nuvem da Microsoft através do Azure-Studio Machine Learning, apropriada para a análise e predição de dados da técnica utilizada. As medições para composição dos conjuntos de testes e validação foram realizadas no prédio do Centro de Informática da UFPE, demonstrando que apesar do baixo esforço de calibração, sem alteração da estrutura existente, atendem aos requisitos necessários. Resultados preliminares mostram que 60% das amostras estavam com erro inferior a 5 metros.
id UFPE_6958e31f17dfa7cc828775e304b80e01
oai_identifier_str oai:repositorio.ufpe.br:123456789/21013
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling BARROS, Antônio Carlos Genn de Assunçãohttp://lattes.cnpq.br/1937732002098007http://lattes.cnpq.br/2887736963561252MONTEIRO, José Augusto Suruagy2017-08-30T17:07:46Z2017-08-30T17:07:46Z2016-02-12https://repositorio.ufpe.br/handle/123456789/21013ark:/64986/0013000002dtxAtualmente as redes locais sem fio (WLANs) em ambientes internos estão presentes na maioria dos prédios públicos. Estas redes, além da sua função principal, podem ser utilizadas para localização de pessoas e objetos, salientando que nestes ambientes não é adequada a utilização do sinal de GPS para esta finalidade. Diversos estudos e pesquisas nesta área têm sido realizados. Serviços baseados na localização interna possuem inúmeras aplicações nas áreas de segurança, médica, monitoramento, navegação, auxílio a deficientes, gerenciamento de pessoas, entre outras e hoje já movimentam um mercado de US$1 Bilhão. Com a proliferação da Internet das Coisas (IoT), estes valores serão ainda maiores. Os sistemas de localização interna utilizam tecnologias como Ultrassom, Infravermelho, RFID, Bluetooth e WLAN, variando conforme a precisão, exatidão, custo, velocidade de resposta, infraestrutura e aplicação. O presente trabalho propõe uma técnica de localização interna que utiliza a intensidade do sinal recebido (RSS — Received Signal Strength) das redes WLAN presentes como medida para localização. Na técnica proposta, é feito inicialmente um mapeamento das intensidades dos sinais da WLANs existentes. Estes valores são classificados através de um Algoritmo de Agrupamento (clustering) e, posteriormente, são aplicados, a cada agrupamento, algoritmos de regressão para o cálculo da localização. Associada a estas técnicas são aplicados filtros visando minimizar as variações do sinal medido decorrentes de interferências do meio. Esta técnica não necessita de grandes esforços de calibração nem alterações na estrutura existente, apenas utilizando a rede WLAN já instalada, obtendo assim uma precisão compatível com aplicações de localização de pessoas e objetos e auxílio em navegação em ambientes internos. Na implementação e testes da técnica proposta, foi empregado o processador Edison da Intel para a coleta das intensidades dos sinais — RSS e como plataforma de servidor foi utilizada a estrutura de nuvem da Microsoft através do Azure-Studio Machine Learning, apropriada para a análise e predição de dados da técnica utilizada. As medições para composição dos conjuntos de testes e validação foram realizadas no prédio do Centro de Informática da UFPE, demonstrando que apesar do baixo esforço de calibração, sem alteração da estrutura existente, atendem aos requisitos necessários. Resultados preliminares mostram que 60% das amostras estavam com erro inferior a 5 metros.Currently, wireless local networks (WLANs) in internal environments are present in most of the public buildings. These networks, in addition to their main function, can be used to locate people and objects, stressing that in these environments it is not adequate the use of the GPS signal to this goal. Several studies and researches in this area have been made. Services based in internal location have many applications in security, health, monitoring, navigation, disabled assistance, and people management, among other areas. Nowadays, they already move a US$ 1 billion market. With the proliferation of the Internet of Things (IoT), these values will increase even further. Internal location systems use technologies such as Ultrasound, Infra-red, RFID, Bluetooth, and WLAN, varying according to the required precision, accuracy, cost, response speed, infrastructure, and application. The following work proposes an internal location technique that uses the received signal strength (RSS) from existing WLAN networks as a location measurement. In the proposed technique, is initially made a mapping of the existing WLANs signals intensities, these values are classified through a Clustering Algorithm and, after that, regression algorithms are applied to each group towards a location classification. Associated to these techniques, filters are applied aiming to minimize the measured signal variations due to the environment interferences. This technique doesn’t require big calibration efforts, nor changes in the existing structure, just uses the already installed WLAN network, obtaining a precision compatible to the one required for people and objects location and assistence in internal environments navigation. In the proposed technique’s implementation and tests, it was used Intel’s Edison processor to collect RSS signal’s intensities. As a server platform, it was used Microsoft’s cloud structure through the Azure-Studio Machine Learning, appropriate for the used technique’s analysis and data prediction. The main set of tests and validation was accomplished in the UFPE Informatics Center building, showing that despite low calibration effort, without changing the existing structure, it complies with the necessary requirements. Preliminary results show that 60% of the samples had errors under 5 meters.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRedessemfio. LocalizaçãoIndoor. WLAN, Wi-Fi. RSS.IPS.Clustering.Wirelessnetworks. Indoorlocation. WLAN. Wi-Fi. RSS. IPS.Clustering.Proposta de técnica de localização interna para dispositivos móveis utilizando redes locais sem fioinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILAntonio_Thesis.pdf.jpgAntonio_Thesis.pdf.jpgGenerated Thumbnailimage/jpeg1375https://repositorio.ufpe.br/bitstream/123456789/21013/5/Antonio_Thesis.pdf.jpg84b33a963a57fd946f8ede118d178edeMD55ORIGINALAntonio_Thesis.pdfAntonio_Thesis.pdfapplication/pdf3530353https://repositorio.ufpe.br/bitstream/123456789/21013/1/Antonio_Thesis.pdf0ba09bccbe8eb163cd5b4646977ba882MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/21013/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/21013/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTAntonio_Thesis.pdf.txtAntonio_Thesis.pdf.txtExtracted texttext/plain239217https://repositorio.ufpe.br/bitstream/123456789/21013/4/Antonio_Thesis.pdf.txtadd341d5331f53f9ff045f2c6603db34MD54123456789/210132019-10-25 07:12:41.667oai:repositorio.ufpe.br:123456789/21013TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T10:12:41Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Proposta de técnica de localização interna para dispositivos móveis utilizando redes locais sem fio
title Proposta de técnica de localização interna para dispositivos móveis utilizando redes locais sem fio
spellingShingle Proposta de técnica de localização interna para dispositivos móveis utilizando redes locais sem fio
BARROS, Antônio Carlos Genn de Assunção
Redessemfio. LocalizaçãoIndoor. WLAN, Wi-Fi. RSS.IPS.Clustering.
Wirelessnetworks. Indoorlocation. WLAN. Wi-Fi. RSS. IPS.Clustering.
title_short Proposta de técnica de localização interna para dispositivos móveis utilizando redes locais sem fio
title_full Proposta de técnica de localização interna para dispositivos móveis utilizando redes locais sem fio
title_fullStr Proposta de técnica de localização interna para dispositivos móveis utilizando redes locais sem fio
title_full_unstemmed Proposta de técnica de localização interna para dispositivos móveis utilizando redes locais sem fio
title_sort Proposta de técnica de localização interna para dispositivos móveis utilizando redes locais sem fio
author BARROS, Antônio Carlos Genn de Assunção
author_facet BARROS, Antônio Carlos Genn de Assunção
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/1937732002098007
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2887736963561252
dc.contributor.author.fl_str_mv BARROS, Antônio Carlos Genn de Assunção
dc.contributor.advisor1.fl_str_mv MONTEIRO, José Augusto Suruagy
contributor_str_mv MONTEIRO, José Augusto Suruagy
dc.subject.por.fl_str_mv Redessemfio. LocalizaçãoIndoor. WLAN, Wi-Fi. RSS.IPS.Clustering.
Wirelessnetworks. Indoorlocation. WLAN. Wi-Fi. RSS. IPS.Clustering.
topic Redessemfio. LocalizaçãoIndoor. WLAN, Wi-Fi. RSS.IPS.Clustering.
Wirelessnetworks. Indoorlocation. WLAN. Wi-Fi. RSS. IPS.Clustering.
description Atualmente as redes locais sem fio (WLANs) em ambientes internos estão presentes na maioria dos prédios públicos. Estas redes, além da sua função principal, podem ser utilizadas para localização de pessoas e objetos, salientando que nestes ambientes não é adequada a utilização do sinal de GPS para esta finalidade. Diversos estudos e pesquisas nesta área têm sido realizados. Serviços baseados na localização interna possuem inúmeras aplicações nas áreas de segurança, médica, monitoramento, navegação, auxílio a deficientes, gerenciamento de pessoas, entre outras e hoje já movimentam um mercado de US$1 Bilhão. Com a proliferação da Internet das Coisas (IoT), estes valores serão ainda maiores. Os sistemas de localização interna utilizam tecnologias como Ultrassom, Infravermelho, RFID, Bluetooth e WLAN, variando conforme a precisão, exatidão, custo, velocidade de resposta, infraestrutura e aplicação. O presente trabalho propõe uma técnica de localização interna que utiliza a intensidade do sinal recebido (RSS — Received Signal Strength) das redes WLAN presentes como medida para localização. Na técnica proposta, é feito inicialmente um mapeamento das intensidades dos sinais da WLANs existentes. Estes valores são classificados através de um Algoritmo de Agrupamento (clustering) e, posteriormente, são aplicados, a cada agrupamento, algoritmos de regressão para o cálculo da localização. Associada a estas técnicas são aplicados filtros visando minimizar as variações do sinal medido decorrentes de interferências do meio. Esta técnica não necessita de grandes esforços de calibração nem alterações na estrutura existente, apenas utilizando a rede WLAN já instalada, obtendo assim uma precisão compatível com aplicações de localização de pessoas e objetos e auxílio em navegação em ambientes internos. Na implementação e testes da técnica proposta, foi empregado o processador Edison da Intel para a coleta das intensidades dos sinais — RSS e como plataforma de servidor foi utilizada a estrutura de nuvem da Microsoft através do Azure-Studio Machine Learning, apropriada para a análise e predição de dados da técnica utilizada. As medições para composição dos conjuntos de testes e validação foram realizadas no prédio do Centro de Informática da UFPE, demonstrando que apesar do baixo esforço de calibração, sem alteração da estrutura existente, atendem aos requisitos necessários. Resultados preliminares mostram que 60% das amostras estavam com erro inferior a 5 metros.
publishDate 2016
dc.date.issued.fl_str_mv 2016-02-12
dc.date.accessioned.fl_str_mv 2017-08-30T17:07:46Z
dc.date.available.fl_str_mv 2017-08-30T17:07:46Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/21013
dc.identifier.dark.fl_str_mv ark:/64986/0013000002dtx
url https://repositorio.ufpe.br/handle/123456789/21013
identifier_str_mv ark:/64986/0013000002dtx
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/21013/5/Antonio_Thesis.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/21013/1/Antonio_Thesis.pdf
https://repositorio.ufpe.br/bitstream/123456789/21013/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/21013/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/21013/4/Antonio_Thesis.pdf.txt
bitstream.checksum.fl_str_mv 84b33a963a57fd946f8ede118d178ede
0ba09bccbe8eb163cd5b4646977ba882
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
add341d5331f53f9ff045f2c6603db34
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172699927871488