Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000008fpb |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/7425 |
Resumo: | Nesta dissertação, fizemos um estudo detalhado das formas normais e da estabilidade de equilíbrios para sistemas Hamiltonianos autônomos e periódicos e aplicamos ao estudo da estabilidade dos pontos de libração do problema restrito dos três corpos nos casos planar circular e espacial circular. Estudamos formas normais para sistemas Hamiltonianos lineares e não-lineares. Para os lineares, consideramos um algoritmo para obter a forma normal quando os autovalores são imaginários puros, um teorema que permite obter a forma normal quando os autovalores são distintos e uma tabela que fornece formas normais para funções Hamiltonianas quadráticas. Para os não lineares, aprendemos as teorias das formas normais de Gustavson, de Birkhoff e de Lie para sistemas Hamiltonianos autônomos e periódicos e, com base nestas teorias, obtivemos a forma normal de algumas funções Hamiltonianas. Estudamos a estabilidade de equilíbrios para sistemas de equações diferenciais ordinárias lineares (autônomos e periódicos) e não-lineares, além disso, adaptamos alguns teoremas para sistemas Hamiltonianos. Com base nos Teoremas de Arnold-Moser e Cabral-Meyer, estudamos a estabilidade para sistemas Hamiltonianos periódicos com um grau de liberdade e sistemas autônomos com dois. Estudamos também a estabilidade para sistemas Hamiltonianos periódicos com dois graus de liberdade e generalizamos alguns resultados para sistemas com n graus de liberdade. No último capítulo, mostramos que os três pontos de libração colineares do problema restrito dos três corpos são instáveis e analisamos em que condições temos a estabilidade dos triangulares |
id |
UFPE_6b93c4e9f9a6241bc8b2640db133a449 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/7425 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
dos Santos, FábioCláudio Vidal Diaz, José 2014-06-12T18:32:10Z2014-06-12T18:32:10Z2004dos Santos, Fábio; Cláudio Vidal Diaz, José. Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2004.https://repositorio.ufpe.br/handle/123456789/7425ark:/64986/0013000008fpbNesta dissertação, fizemos um estudo detalhado das formas normais e da estabilidade de equilíbrios para sistemas Hamiltonianos autônomos e periódicos e aplicamos ao estudo da estabilidade dos pontos de libração do problema restrito dos três corpos nos casos planar circular e espacial circular. Estudamos formas normais para sistemas Hamiltonianos lineares e não-lineares. Para os lineares, consideramos um algoritmo para obter a forma normal quando os autovalores são imaginários puros, um teorema que permite obter a forma normal quando os autovalores são distintos e uma tabela que fornece formas normais para funções Hamiltonianas quadráticas. Para os não lineares, aprendemos as teorias das formas normais de Gustavson, de Birkhoff e de Lie para sistemas Hamiltonianos autônomos e periódicos e, com base nestas teorias, obtivemos a forma normal de algumas funções Hamiltonianas. Estudamos a estabilidade de equilíbrios para sistemas de equações diferenciais ordinárias lineares (autônomos e periódicos) e não-lineares, além disso, adaptamos alguns teoremas para sistemas Hamiltonianos. Com base nos Teoremas de Arnold-Moser e Cabral-Meyer, estudamos a estabilidade para sistemas Hamiltonianos periódicos com um grau de liberdade e sistemas autônomos com dois. Estudamos também a estabilidade para sistemas Hamiltonianos periódicos com dois graus de liberdade e generalizamos alguns resultados para sistemas com n graus de liberdade. No último capítulo, mostramos que os três pontos de libração colineares do problema restrito dos três corpos são instáveis e analisamos em que condições temos a estabilidade dos triangularesConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSistemas hamiltonianosEstabilidade de eqüilíbriosFormas normaisFormas normais e estabilidade de eqüilíbrios para sistemas hamiltonianosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALarquivo8539_1.pdfapplication/pdf1688292https://repositorio.ufpe.br/bitstream/123456789/7425/1/arquivo8539_1.pdfe78c7455af4fbe24c0efc101f531e1e3MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/7425/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo8539_1.pdf.txtarquivo8539_1.pdf.txtExtracted texttext/plain316401https://repositorio.ufpe.br/bitstream/123456789/7425/3/arquivo8539_1.pdf.txtd0e9ae7b83c05a2253be9c2f8373e6faMD53THUMBNAILarquivo8539_1.pdf.jpgarquivo8539_1.pdf.jpgGenerated Thumbnailimage/jpeg1420https://repositorio.ufpe.br/bitstream/123456789/7425/4/arquivo8539_1.pdf.jpga05692ca781e1b7d435a26b79220b087MD54123456789/74252019-10-25 02:28:17.955oai:repositorio.ufpe.br:123456789/7425Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:28:17Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos |
title |
Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos |
spellingShingle |
Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos dos Santos, Fábio Sistemas hamiltonianos Estabilidade de eqüilíbrios Formas normais |
title_short |
Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos |
title_full |
Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos |
title_fullStr |
Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos |
title_full_unstemmed |
Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos |
title_sort |
Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos |
author |
dos Santos, Fábio |
author_facet |
dos Santos, Fábio |
author_role |
author |
dc.contributor.author.fl_str_mv |
dos Santos, Fábio |
dc.contributor.advisor1.fl_str_mv |
Cláudio Vidal Diaz, José |
contributor_str_mv |
Cláudio Vidal Diaz, José |
dc.subject.por.fl_str_mv |
Sistemas hamiltonianos Estabilidade de eqüilíbrios Formas normais |
topic |
Sistemas hamiltonianos Estabilidade de eqüilíbrios Formas normais |
description |
Nesta dissertação, fizemos um estudo detalhado das formas normais e da estabilidade de equilíbrios para sistemas Hamiltonianos autônomos e periódicos e aplicamos ao estudo da estabilidade dos pontos de libração do problema restrito dos três corpos nos casos planar circular e espacial circular. Estudamos formas normais para sistemas Hamiltonianos lineares e não-lineares. Para os lineares, consideramos um algoritmo para obter a forma normal quando os autovalores são imaginários puros, um teorema que permite obter a forma normal quando os autovalores são distintos e uma tabela que fornece formas normais para funções Hamiltonianas quadráticas. Para os não lineares, aprendemos as teorias das formas normais de Gustavson, de Birkhoff e de Lie para sistemas Hamiltonianos autônomos e periódicos e, com base nestas teorias, obtivemos a forma normal de algumas funções Hamiltonianas. Estudamos a estabilidade de equilíbrios para sistemas de equações diferenciais ordinárias lineares (autônomos e periódicos) e não-lineares, além disso, adaptamos alguns teoremas para sistemas Hamiltonianos. Com base nos Teoremas de Arnold-Moser e Cabral-Meyer, estudamos a estabilidade para sistemas Hamiltonianos periódicos com um grau de liberdade e sistemas autônomos com dois. Estudamos também a estabilidade para sistemas Hamiltonianos periódicos com dois graus de liberdade e generalizamos alguns resultados para sistemas com n graus de liberdade. No último capítulo, mostramos que os três pontos de libração colineares do problema restrito dos três corpos são instáveis e analisamos em que condições temos a estabilidade dos triangulares |
publishDate |
2004 |
dc.date.issued.fl_str_mv |
2004 |
dc.date.accessioned.fl_str_mv |
2014-06-12T18:32:10Z |
dc.date.available.fl_str_mv |
2014-06-12T18:32:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
dos Santos, Fábio; Cláudio Vidal Diaz, José. Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2004. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/7425 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000008fpb |
identifier_str_mv |
dos Santos, Fábio; Cláudio Vidal Diaz, José. Formas normais e estabilidade de eqüilíbrios para sistemas hamiltonianos. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2004. ark:/64986/0013000008fpb |
url |
https://repositorio.ufpe.br/handle/123456789/7425 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/7425/1/arquivo8539_1.pdf https://repositorio.ufpe.br/bitstream/123456789/7425/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/7425/3/arquivo8539_1.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/7425/4/arquivo8539_1.pdf.jpg |
bitstream.checksum.fl_str_mv |
e78c7455af4fbe24c0efc101f531e1e3 8a4605be74aa9ea9d79846c1fba20a33 d0e9ae7b83c05a2253be9c2f8373e6fa a05692ca781e1b7d435a26b79220b087 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172759391567872 |