Ajuste ao histórico em reservatórios de petróleo usando o Método do Filtro de Kalman con Ensembles (EnKF)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000vnqv |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/26644 |
Resumo: | A simulação de reservatórios é uma importante ferramenta usada pela indústria do petróleo para o gerenciamento de reservatórios. A fim de obter previsões da produção de óleo confiáveis, diferentes propriedades petrofísicas do reservatório, como porosidade e permeabilidade são usadas nos modelos de reservatórios. Porém, medições diretas dessas propriedades são possíveis apenas em alguns poucos poços. Uma forma de melhorar o conhecimento sobre essas propriedades é através do processo de ajuste ao histórico. O ajuste ao histórico consiste em melhorar estimativas de propriedades do reservatório usadas na construção de um modelo de reservatório de forma que as previsões do modelo se aproximem dos dados medidos em campo. Nesta dissertação apresentamos um estudo para o ajuste ao histórico automático baseado em um modelo areal, isto é, que considera o reservatório plano e horizontal, descrito por apenas duas dimensões geométricas, de um reservatório bifásico (óleo/água), onde desejamos estimar a distribuição de permeabilidades do reservatório. Devido à sua simplicidade e eficiência, o método do Filtro de Kalman com Ensembles (EnKF), é usado para assimilar as medições estáticas e dinâmicas, atualizando continuamente as propriedades do reservatório. O EnKF nos últimos anos tem ganhado muita popularidade, é um método de assimilação de dados para modelos dinâmicos não lineares de alta dimensão e portanto adequado para ser usado no ajuste ao histórico de modelos de simulação de reservatórios. O EnKF foi implementado em Matlab e acoplado ao Matlab Reservoir Simulation Toolbox (MRST), que foi desenvolvido pelo SINTEF para simulação de reservatórios, e foi aplicado a dois casos sintéticos simples. Os resultados mostraram que a rotina EnKF funcionou corretamente, mostrando-se que, para muitos dos parâmetros com incerteza inicial, esta foi reduzida a um nível aceitável, para a produção de petróleo e água. |
id |
UFPE_6cc3f98ffa87a5e3b244766a3c2d3cf9 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/26644 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
PAREJA, Roberto Navarrohttp://lattes.cnpq.br/6847816910224451http://lattes.cnpq.br/8965627710203749WILLMERSDORF, Ramiro Brito2018-09-17T22:46:50Z2018-09-17T22:46:50Z2014-08-26https://repositorio.ufpe.br/handle/123456789/26644ark:/64986/001300000vnqvA simulação de reservatórios é uma importante ferramenta usada pela indústria do petróleo para o gerenciamento de reservatórios. A fim de obter previsões da produção de óleo confiáveis, diferentes propriedades petrofísicas do reservatório, como porosidade e permeabilidade são usadas nos modelos de reservatórios. Porém, medições diretas dessas propriedades são possíveis apenas em alguns poucos poços. Uma forma de melhorar o conhecimento sobre essas propriedades é através do processo de ajuste ao histórico. O ajuste ao histórico consiste em melhorar estimativas de propriedades do reservatório usadas na construção de um modelo de reservatório de forma que as previsões do modelo se aproximem dos dados medidos em campo. Nesta dissertação apresentamos um estudo para o ajuste ao histórico automático baseado em um modelo areal, isto é, que considera o reservatório plano e horizontal, descrito por apenas duas dimensões geométricas, de um reservatório bifásico (óleo/água), onde desejamos estimar a distribuição de permeabilidades do reservatório. Devido à sua simplicidade e eficiência, o método do Filtro de Kalman com Ensembles (EnKF), é usado para assimilar as medições estáticas e dinâmicas, atualizando continuamente as propriedades do reservatório. O EnKF nos últimos anos tem ganhado muita popularidade, é um método de assimilação de dados para modelos dinâmicos não lineares de alta dimensão e portanto adequado para ser usado no ajuste ao histórico de modelos de simulação de reservatórios. O EnKF foi implementado em Matlab e acoplado ao Matlab Reservoir Simulation Toolbox (MRST), que foi desenvolvido pelo SINTEF para simulação de reservatórios, e foi aplicado a dois casos sintéticos simples. Os resultados mostraram que a rotina EnKF funcionou corretamente, mostrando-se que, para muitos dos parâmetros com incerteza inicial, esta foi reduzida a um nível aceitável, para a produção de petróleo e água.CAPESReservoir simulation is an important tool used by the oil industry for reservoir management. In order to obtain reliable predictions of oil production, different petrophysical properties such as porosity and permeability are used to build the reservoir models. However, direct measurements of these properties are only possible in a few wells. One way to improve the knowledge of these properties is through the history matching process. History matching improves the estimates of reservoir properties used in the construction of the reservoir model so that the model predictions are closer to the measured production of the field. In this paper we present a study for an automatic history matching based upon and two-dimensional model of two-phase (oil/water) reservoir, where we wish to improve the estimate of the distribution of the reservoir permeabilities. Due to its simplicity and efficiency, the method of the Ensemble Kalman Filter (EnKF) is used to assimilate the static and dynamic measurements, continuously updating the properties of the reservoir. The EnKF, in recent years has gained much popularity, as it is a method for dynamic data assimilation for nonlinear models of high dimension and therefore suitable for use in history matching models of reservoir simulations. The EnKF was implemented in Matlab and coupled to Matlab Reservoir Simulation Toolbox (MRST), which was developed by SINTEF for reservoir simulation, and was applied to two simple synthetic cases. The results showed that the EnKF routine works properly, showing that, for many of the parameters and initial uncertainty has been reduced to an acceptable level for the production of oil and water.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia CivilUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia CivilAjuste ao HistóricoEnKFAssimilação de DadosMRSTAjuste ao histórico em reservatórios de petróleo usando o Método do Filtro de Kalman con Ensembles (EnKF)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Roberto Navarro Pareja.pdf.jpgDISSERTAÇÃO Roberto Navarro Pareja.pdf.jpgGenerated Thumbnailimage/jpeg1265https://repositorio.ufpe.br/bitstream/123456789/26644/5/DISSERTA%c3%87%c3%83O%20Roberto%20Navarro%20Pareja.pdf.jpg12232e7e5556dd1ef79a38a84e89e1dfMD55ORIGINALDISSERTAÇÃO Roberto Navarro Pareja.pdfDISSERTAÇÃO Roberto Navarro Pareja.pdfapplication/pdf3454842https://repositorio.ufpe.br/bitstream/123456789/26644/1/DISSERTA%c3%87%c3%83O%20Roberto%20Navarro%20Pareja.pdfadd35a3c61e16d12a7de8eec98d2b411MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/26644/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/26644/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Roberto Navarro Pareja.pdf.txtDISSERTAÇÃO Roberto Navarro Pareja.pdf.txtExtracted texttext/plain189195https://repositorio.ufpe.br/bitstream/123456789/26644/4/DISSERTA%c3%87%c3%83O%20Roberto%20Navarro%20Pareja.pdf.txt5ba625624061b6163314d09728d150ffMD54123456789/266442019-10-26 02:34:24.366oai:repositorio.ufpe.br:123456789/26644TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T05:34:24Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Ajuste ao histórico em reservatórios de petróleo usando o Método do Filtro de Kalman con Ensembles (EnKF) |
title |
Ajuste ao histórico em reservatórios de petróleo usando o Método do Filtro de Kalman con Ensembles (EnKF) |
spellingShingle |
Ajuste ao histórico em reservatórios de petróleo usando o Método do Filtro de Kalman con Ensembles (EnKF) PAREJA, Roberto Navarro Engenharia Civil Ajuste ao Histórico EnKF Assimilação de Dados MRST |
title_short |
Ajuste ao histórico em reservatórios de petróleo usando o Método do Filtro de Kalman con Ensembles (EnKF) |
title_full |
Ajuste ao histórico em reservatórios de petróleo usando o Método do Filtro de Kalman con Ensembles (EnKF) |
title_fullStr |
Ajuste ao histórico em reservatórios de petróleo usando o Método do Filtro de Kalman con Ensembles (EnKF) |
title_full_unstemmed |
Ajuste ao histórico em reservatórios de petróleo usando o Método do Filtro de Kalman con Ensembles (EnKF) |
title_sort |
Ajuste ao histórico em reservatórios de petróleo usando o Método do Filtro de Kalman con Ensembles (EnKF) |
author |
PAREJA, Roberto Navarro |
author_facet |
PAREJA, Roberto Navarro |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6847816910224451 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/8965627710203749 |
dc.contributor.author.fl_str_mv |
PAREJA, Roberto Navarro |
dc.contributor.advisor1.fl_str_mv |
WILLMERSDORF, Ramiro Brito |
contributor_str_mv |
WILLMERSDORF, Ramiro Brito |
dc.subject.por.fl_str_mv |
Engenharia Civil Ajuste ao Histórico EnKF Assimilação de Dados MRST |
topic |
Engenharia Civil Ajuste ao Histórico EnKF Assimilação de Dados MRST |
description |
A simulação de reservatórios é uma importante ferramenta usada pela indústria do petróleo para o gerenciamento de reservatórios. A fim de obter previsões da produção de óleo confiáveis, diferentes propriedades petrofísicas do reservatório, como porosidade e permeabilidade são usadas nos modelos de reservatórios. Porém, medições diretas dessas propriedades são possíveis apenas em alguns poucos poços. Uma forma de melhorar o conhecimento sobre essas propriedades é através do processo de ajuste ao histórico. O ajuste ao histórico consiste em melhorar estimativas de propriedades do reservatório usadas na construção de um modelo de reservatório de forma que as previsões do modelo se aproximem dos dados medidos em campo. Nesta dissertação apresentamos um estudo para o ajuste ao histórico automático baseado em um modelo areal, isto é, que considera o reservatório plano e horizontal, descrito por apenas duas dimensões geométricas, de um reservatório bifásico (óleo/água), onde desejamos estimar a distribuição de permeabilidades do reservatório. Devido à sua simplicidade e eficiência, o método do Filtro de Kalman com Ensembles (EnKF), é usado para assimilar as medições estáticas e dinâmicas, atualizando continuamente as propriedades do reservatório. O EnKF nos últimos anos tem ganhado muita popularidade, é um método de assimilação de dados para modelos dinâmicos não lineares de alta dimensão e portanto adequado para ser usado no ajuste ao histórico de modelos de simulação de reservatórios. O EnKF foi implementado em Matlab e acoplado ao Matlab Reservoir Simulation Toolbox (MRST), que foi desenvolvido pelo SINTEF para simulação de reservatórios, e foi aplicado a dois casos sintéticos simples. Os resultados mostraram que a rotina EnKF funcionou corretamente, mostrando-se que, para muitos dos parâmetros com incerteza inicial, esta foi reduzida a um nível aceitável, para a produção de petróleo e água. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-08-26 |
dc.date.accessioned.fl_str_mv |
2018-09-17T22:46:50Z |
dc.date.available.fl_str_mv |
2018-09-17T22:46:50Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/26644 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000vnqv |
url |
https://repositorio.ufpe.br/handle/123456789/26644 |
identifier_str_mv |
ark:/64986/001300000vnqv |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Engenharia Civil |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/26644/5/DISSERTA%c3%87%c3%83O%20Roberto%20Navarro%20Pareja.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/26644/1/DISSERTA%c3%87%c3%83O%20Roberto%20Navarro%20Pareja.pdf https://repositorio.ufpe.br/bitstream/123456789/26644/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/26644/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/26644/4/DISSERTA%c3%87%c3%83O%20Roberto%20Navarro%20Pareja.pdf.txt |
bitstream.checksum.fl_str_mv |
12232e7e5556dd1ef79a38a84e89e1df add35a3c61e16d12a7de8eec98d2b411 e39d27027a6cc9cb039ad269a5db8e34 4b8a02c7f2818eaf00dcf2260dd5eb08 5ba625624061b6163314d09728d150ff |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172926537728000 |