Detecção e classificação de lesões em imagens de mamografia usando classificadores SVM, wavelets morfológicas e seleção de atributos

Detalhes bibliográficos
Autor(a) principal: ROCHA, Arthur Diego Dias
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000wqcc
Texto Completo: https://repositorio.ufpe.br/handle/123456789/17901
Resumo: O c^ancer de mama e o mais comum entre as mulheres no mundo e no Brasil, depois do de pele n~ao melanoma. De acordo com o Instituto Nacional de C^ancer, em 2013 foram registradas 14.388 mortes devido a esta mol estia. O c^ancer de mama e uma preocupa c~ao n~ao somente nacional, mas mundial. O m etodo utilizado para a sua detec c~ao e a mamogra a, que e uma t ecnica de imagem que utiliza a emiss~ao Raios-X incidentes na mama e capta a parte da radia c~ao n~ao absorvida pelos tecidos mam arios. A mamogra a e um exame de dif cil an alise pelo motivo de, em muitos casos, a densidade tecidual do tumor ser bastante parecida com a densidade de alguns tecidos saud aveis da mama. Uma abordagem interessante e a utiliza c~ao de t ecnicas computadorizadas de aux lio ao diagn ostico, ou seja, ferramentas baseadas em processamento de imagens e intelig^encia computacional projetadas para o apoio ao pro ssional radiologista. Estudos pr evios demonstram que considerar a domin^ancia tecidual mam aria nas ferramentas computacionais de apoio ao diagn ostico melhora consideravelmente as taxas de acerto. Para este trabalho, e proposta a constru c~ao de um sistema de classi ca c~ao de tumores de mama baseado descritores de Zernike como um descritor de forma das les~oes de mama, associado as m aquinas de vetor de suporte como classi cador. S~ao comparadas diferentes t ecnicas de sele c~ao de atributos com o objetivo de reduzir o custo computacional do sistema, mas sempre levando em conta a necessidade de se manter altas taxas de acerto, j a que isto pode re etir em erros de diagn ostico de c^ancer de mama. Atrav es dos dados analisados, e notado que a t ecnica linear de an alise de componentes principais (aliada a transformada de wavelets morfol ogica como etapa de pr e-processamento) se mostrou uma otima t ecnica para realiza c~ao de redu c~ao de atributos com um menor impacto nas taxas de acerto do sistema de apoio ao diagn ostico do c^ancer de mama, onde s~ao obtidas taxas de m edias de redu c~ao de acerto em torno de 2% (uma queda m edia de aproximadamente 95% para 93%), onde a redu c~ao do tamanho do vetor de atributos e de cerca de 64% (dentre os diferentes tipos de tecido, s~ao selecionados de 70 a 89 atributos do total de 224).
id UFPE_700c34b1fe28a5916c158f3f663d8312
oai_identifier_str oai:repositorio.ufpe.br:123456789/17901
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling ROCHA, Arthur Diego Diashttp://lattes.cnpq.br/5161747893799561http://lattes.cnpq.br/5161747893799561SANTOS, Wellington Pinheiro dosSOUZA, Ricardo Emmanuel de2016-09-20T13:30:21Z2016-09-20T13:30:21Z2016-02-22https://repositorio.ufpe.br/handle/123456789/17901ark:/64986/001300000wqccO c^ancer de mama e o mais comum entre as mulheres no mundo e no Brasil, depois do de pele n~ao melanoma. De acordo com o Instituto Nacional de C^ancer, em 2013 foram registradas 14.388 mortes devido a esta mol estia. O c^ancer de mama e uma preocupa c~ao n~ao somente nacional, mas mundial. O m etodo utilizado para a sua detec c~ao e a mamogra a, que e uma t ecnica de imagem que utiliza a emiss~ao Raios-X incidentes na mama e capta a parte da radia c~ao n~ao absorvida pelos tecidos mam arios. A mamogra a e um exame de dif cil an alise pelo motivo de, em muitos casos, a densidade tecidual do tumor ser bastante parecida com a densidade de alguns tecidos saud aveis da mama. Uma abordagem interessante e a utiliza c~ao de t ecnicas computadorizadas de aux lio ao diagn ostico, ou seja, ferramentas baseadas em processamento de imagens e intelig^encia computacional projetadas para o apoio ao pro ssional radiologista. Estudos pr evios demonstram que considerar a domin^ancia tecidual mam aria nas ferramentas computacionais de apoio ao diagn ostico melhora consideravelmente as taxas de acerto. Para este trabalho, e proposta a constru c~ao de um sistema de classi ca c~ao de tumores de mama baseado descritores de Zernike como um descritor de forma das les~oes de mama, associado as m aquinas de vetor de suporte como classi cador. S~ao comparadas diferentes t ecnicas de sele c~ao de atributos com o objetivo de reduzir o custo computacional do sistema, mas sempre levando em conta a necessidade de se manter altas taxas de acerto, j a que isto pode re etir em erros de diagn ostico de c^ancer de mama. Atrav es dos dados analisados, e notado que a t ecnica linear de an alise de componentes principais (aliada a transformada de wavelets morfol ogica como etapa de pr e-processamento) se mostrou uma otima t ecnica para realiza c~ao de redu c~ao de atributos com um menor impacto nas taxas de acerto do sistema de apoio ao diagn ostico do c^ancer de mama, onde s~ao obtidas taxas de m edias de redu c~ao de acerto em torno de 2% (uma queda m edia de aproximadamente 95% para 93%), onde a redu c~ao do tamanho do vetor de atributos e de cerca de 64% (dentre os diferentes tipos de tecido, s~ao selecionados de 70 a 89 atributos do total de 224).FACEPEBreast cancer is one of the most common type of cancer among women. According to Brazil's national institute of cancer, in 2013 it was registered 14,388 deaths due to this disease. Breast cancer is not only a national but worldwide concern. The most used method to its detection is mammography which is an image technique that uses X ray emission and measures the non-absorbed radiation by the breast internal tissues. Mammography is a hard to analyze image exam, mainly because in many cases tumor's density is much alike some of the healthy tissues' density. An interesting approach is the use of computeraided techniques for diagnosis, meaning the use of image processing and computational intelligence tools designed to support and aid radiologists in their tasks. Previous studies show that considering the di erent types of breast tissue dominance improves considerably the rate of correct classi cation by these computational tools. It is proposed for this work the development of a breast tumor classi cation system based on Zernike descriptors as shape descriptors of these breast lesions along with support vector machines as machine learning algorithms for classi cation. Some feature selection techniques are compared for reducing the whole system computational cost but always taking into consideration that the classi cation rates must be kept as high as possible. Of the techniques studied in this work, principal components analysis along with morphological wavelet transform for image preprocessing has shown itself as a great technique for feature reduction with lesser impact on classi cation rates. It was achieved a mean 2% loss in those rates (from about 95% to 93% as mean values) with a mean feature reduction of about 64% (in the range of 70 to 89 features from 224).porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia BiomedicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessmonografiaSele ção de AtributosCâsncer de MamaProcessamento de ImagemMammographyFeature SelectionBreast CancerImage ProcessingDetecção e classificação de lesões em imagens de mamografia usando classificadores SVM, wavelets morfológicas e seleção de atributosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILArthurDiegoDiasRocha.pdf.jpgArthurDiegoDiasRocha.pdf.jpgGenerated Thumbnailimage/jpeg1235https://repositorio.ufpe.br/bitstream/123456789/17901/5/ArthurDiegoDiasRocha.pdf.jpgefb5dd066b11b4b2c6d8b50cf5ba3c01MD55ORIGINALArthurDiegoDiasRocha.pdfArthurDiegoDiasRocha.pdfapplication/pdf4681451https://repositorio.ufpe.br/bitstream/123456789/17901/1/ArthurDiegoDiasRocha.pdf976cd7abe56f828ff55cbd595fdc6c6fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/17901/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/17901/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTArthurDiegoDiasRocha.pdf.txtArthurDiegoDiasRocha.pdf.txtExtracted texttext/plain195068https://repositorio.ufpe.br/bitstream/123456789/17901/4/ArthurDiegoDiasRocha.pdf.txtc722d93a94970d3d8c21c4cc2ad2e88cMD54123456789/179012019-10-25 06:07:17.649oai:repositorio.ufpe.br:123456789/17901TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T09:07:17Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Detecção e classificação de lesões em imagens de mamografia usando classificadores SVM, wavelets morfológicas e seleção de atributos
title Detecção e classificação de lesões em imagens de mamografia usando classificadores SVM, wavelets morfológicas e seleção de atributos
spellingShingle Detecção e classificação de lesões em imagens de mamografia usando classificadores SVM, wavelets morfológicas e seleção de atributos
ROCHA, Arthur Diego Dias
monografia
Sele ção de Atributos
Câsncer de Mama
Processamento de Imagem
Mammography
Feature Selection
Breast Cancer
Image Processing
title_short Detecção e classificação de lesões em imagens de mamografia usando classificadores SVM, wavelets morfológicas e seleção de atributos
title_full Detecção e classificação de lesões em imagens de mamografia usando classificadores SVM, wavelets morfológicas e seleção de atributos
title_fullStr Detecção e classificação de lesões em imagens de mamografia usando classificadores SVM, wavelets morfológicas e seleção de atributos
title_full_unstemmed Detecção e classificação de lesões em imagens de mamografia usando classificadores SVM, wavelets morfológicas e seleção de atributos
title_sort Detecção e classificação de lesões em imagens de mamografia usando classificadores SVM, wavelets morfológicas e seleção de atributos
author ROCHA, Arthur Diego Dias
author_facet ROCHA, Arthur Diego Dias
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5161747893799561
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5161747893799561
dc.contributor.author.fl_str_mv ROCHA, Arthur Diego Dias
dc.contributor.advisor1.fl_str_mv SANTOS, Wellington Pinheiro dos
dc.contributor.advisor-co1.fl_str_mv SOUZA, Ricardo Emmanuel de
contributor_str_mv SANTOS, Wellington Pinheiro dos
SOUZA, Ricardo Emmanuel de
dc.subject.por.fl_str_mv monografia
Sele ção de Atributos
Câsncer de Mama
Processamento de Imagem
Mammography
Feature Selection
Breast Cancer
Image Processing
topic monografia
Sele ção de Atributos
Câsncer de Mama
Processamento de Imagem
Mammography
Feature Selection
Breast Cancer
Image Processing
description O c^ancer de mama e o mais comum entre as mulheres no mundo e no Brasil, depois do de pele n~ao melanoma. De acordo com o Instituto Nacional de C^ancer, em 2013 foram registradas 14.388 mortes devido a esta mol estia. O c^ancer de mama e uma preocupa c~ao n~ao somente nacional, mas mundial. O m etodo utilizado para a sua detec c~ao e a mamogra a, que e uma t ecnica de imagem que utiliza a emiss~ao Raios-X incidentes na mama e capta a parte da radia c~ao n~ao absorvida pelos tecidos mam arios. A mamogra a e um exame de dif cil an alise pelo motivo de, em muitos casos, a densidade tecidual do tumor ser bastante parecida com a densidade de alguns tecidos saud aveis da mama. Uma abordagem interessante e a utiliza c~ao de t ecnicas computadorizadas de aux lio ao diagn ostico, ou seja, ferramentas baseadas em processamento de imagens e intelig^encia computacional projetadas para o apoio ao pro ssional radiologista. Estudos pr evios demonstram que considerar a domin^ancia tecidual mam aria nas ferramentas computacionais de apoio ao diagn ostico melhora consideravelmente as taxas de acerto. Para este trabalho, e proposta a constru c~ao de um sistema de classi ca c~ao de tumores de mama baseado descritores de Zernike como um descritor de forma das les~oes de mama, associado as m aquinas de vetor de suporte como classi cador. S~ao comparadas diferentes t ecnicas de sele c~ao de atributos com o objetivo de reduzir o custo computacional do sistema, mas sempre levando em conta a necessidade de se manter altas taxas de acerto, j a que isto pode re etir em erros de diagn ostico de c^ancer de mama. Atrav es dos dados analisados, e notado que a t ecnica linear de an alise de componentes principais (aliada a transformada de wavelets morfol ogica como etapa de pr e-processamento) se mostrou uma otima t ecnica para realiza c~ao de redu c~ao de atributos com um menor impacto nas taxas de acerto do sistema de apoio ao diagn ostico do c^ancer de mama, onde s~ao obtidas taxas de m edias de redu c~ao de acerto em torno de 2% (uma queda m edia de aproximadamente 95% para 93%), onde a redu c~ao do tamanho do vetor de atributos e de cerca de 64% (dentre os diferentes tipos de tecido, s~ao selecionados de 70 a 89 atributos do total de 224).
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-09-20T13:30:21Z
dc.date.available.fl_str_mv 2016-09-20T13:30:21Z
dc.date.issued.fl_str_mv 2016-02-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/17901
dc.identifier.dark.fl_str_mv ark:/64986/001300000wqcc
url https://repositorio.ufpe.br/handle/123456789/17901
identifier_str_mv ark:/64986/001300000wqcc
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Engenharia Biomedica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/17901/5/ArthurDiegoDiasRocha.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/17901/1/ArthurDiegoDiasRocha.pdf
https://repositorio.ufpe.br/bitstream/123456789/17901/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/17901/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/17901/4/ArthurDiegoDiasRocha.pdf.txt
bitstream.checksum.fl_str_mv efb5dd066b11b4b2c6d8b50cf5ba3c01
976cd7abe56f828ff55cbd595fdc6c6f
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
c722d93a94970d3d8c21c4cc2ad2e88c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172936471937024