Segmentação de imagens 3D utilizando combinação de imagens 2D

Detalhes bibliográficos
Autor(a) principal: ARAÚJO, Caio Fernandes
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000bf6r
Texto Completo: https://repositorio.ufpe.br/handle/123456789/21040
Resumo: Segmentar imagens de maneira automática é um grande desafio. Apesar do ser humano conseguir fazer essa distinção, em muitos casos, para um computador essa divisão pode não ser tão trivial. Vários aspectos têm de ser levados em consideração, que podem incluir cor, posição, vizinhanças, textura, entre outros. Esse desafio aumenta quando se passa a utilizar imagens médicas, como as ressonâncias magnéticas, pois essas, além de possuírem diferentes formatos dos órgãos em diferentes pessoas, possuem áreas em que a variação da intensidade dos pixels se mostra bastante sutil entre os vizinhos, o que dificulta a segmentação automática. Além disso, a variação citada não permite que haja um formato pré-definido em vários casos, pois as diferenças internas nos corpos dos pacientes, especialmente os que possuem alguma patologia, podem ser grandes demais para que se haja uma generalização. Mas justamente por esse possuírem esses problemas, são os principais focos dos profissionais que analisam as imagens médicas. Este trabalho visa, portanto, contribuir para a melhoria da segmentação dessas imagens médicas. Para isso, utiliza a ideia do Bagging de gerar diferentes imagens 2D para segmentar a partir de uma única imagem 3D, e conceitos de combinação de classificadores para uni-las, para assim conseguir resultados estatisticamente melhores, se comparados aos métodos populares de segmentação. Para se verificar a eficácia do método proposto, a segmentação das imagens foi feita utilizando quatro técnicas de segmentação diferentes, e seus resultados combinados. As técnicas escolhidas foram: binarização pelo método de Otsu, o K-Means, rede neural SOM e o modelo estatístico GMM. As imagens utilizadas nos experimentos foram imagens reais, de ressonâncias magnéticas do cérebro, e o intuito do trabalho foi segmentar a matéria cinza do cérebro. As imagens foram todas em 3D, e as segmentações foram feitas em fatias 2D da imagem original, que antes passa por uma fase de pré-processamento, onde há a extração do cérebro do crânio. Os resultados obtidos mostram que o método proposto se mostrou bem sucedido, uma vez que, em todas as técnicas utilizadas, houve uma melhoria na taxa de acerto da segmentação, comprovada através do teste estatístico T-Teste. Assim, o trabalho mostra que utilizar os princípios de combinação de classificadores em segmentações de imagens médicas pode apresentar resultados melhores.
id UFPE_74a1c3adeef1ee08de5e4ff556096d75
oai_identifier_str oai:repositorio.ufpe.br:123456789/21040
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling ARAÚJO, Caio Fernandeshttp://lattes.cnpq.br/3055205407201109http://lattes.cnpq.br/3084134533707587REN, Tsang Ing2017-08-30T18:18:42Z2017-08-30T18:18:42Z2016-08-12https://repositorio.ufpe.br/handle/123456789/21040ark:/64986/001300000bf6rSegmentar imagens de maneira automática é um grande desafio. Apesar do ser humano conseguir fazer essa distinção, em muitos casos, para um computador essa divisão pode não ser tão trivial. Vários aspectos têm de ser levados em consideração, que podem incluir cor, posição, vizinhanças, textura, entre outros. Esse desafio aumenta quando se passa a utilizar imagens médicas, como as ressonâncias magnéticas, pois essas, além de possuírem diferentes formatos dos órgãos em diferentes pessoas, possuem áreas em que a variação da intensidade dos pixels se mostra bastante sutil entre os vizinhos, o que dificulta a segmentação automática. Além disso, a variação citada não permite que haja um formato pré-definido em vários casos, pois as diferenças internas nos corpos dos pacientes, especialmente os que possuem alguma patologia, podem ser grandes demais para que se haja uma generalização. Mas justamente por esse possuírem esses problemas, são os principais focos dos profissionais que analisam as imagens médicas. Este trabalho visa, portanto, contribuir para a melhoria da segmentação dessas imagens médicas. Para isso, utiliza a ideia do Bagging de gerar diferentes imagens 2D para segmentar a partir de uma única imagem 3D, e conceitos de combinação de classificadores para uni-las, para assim conseguir resultados estatisticamente melhores, se comparados aos métodos populares de segmentação. Para se verificar a eficácia do método proposto, a segmentação das imagens foi feita utilizando quatro técnicas de segmentação diferentes, e seus resultados combinados. As técnicas escolhidas foram: binarização pelo método de Otsu, o K-Means, rede neural SOM e o modelo estatístico GMM. As imagens utilizadas nos experimentos foram imagens reais, de ressonâncias magnéticas do cérebro, e o intuito do trabalho foi segmentar a matéria cinza do cérebro. As imagens foram todas em 3D, e as segmentações foram feitas em fatias 2D da imagem original, que antes passa por uma fase de pré-processamento, onde há a extração do cérebro do crânio. Os resultados obtidos mostram que o método proposto se mostrou bem sucedido, uma vez que, em todas as técnicas utilizadas, houve uma melhoria na taxa de acerto da segmentação, comprovada através do teste estatístico T-Teste. Assim, o trabalho mostra que utilizar os princípios de combinação de classificadores em segmentações de imagens médicas pode apresentar resultados melhores.CAPESAutomatic image segmentation is still a great challenge today. Despite the human being able to make this distinction, in most of the cases easily and quickly, to a computer this task may not be that trivial. Several characteristics have to be taken into account by the computer, which may include color, position, neighborhoods, texture, among others. This challenge increases greatly when it comes to using medical images, like the MRI, as these besides producing images of organs with different formats in different people, have regions where the intensity variation of pixels is subtle between neighboring pixels, which complicates even more the automatic segmentation. Furthermore, the above mentioned variation does not allow a pre-defined format in various cases, because the internal differences between patients bodies, especially those with a pathology, may be too large to make a generalization. But specially for having this kind of problem, those people are the main targets of the professionals that analyze medical images. This work, therefore, tries to contribute to the segmentation of medical images. For this, it uses the idea of Bagging to generate different 2D images from a single 3D image, and combination of classifiers to unite them, to achieve statistically significant better results, if compared to popular segmentation methods. To verify the effectiveness of the proposed method, the segmentation of the images is performed using four different segmentation techniques, and their combined results. The chosen techniques are the binarization by the Otsu method, K-Means, the neural network SOM and the statistical model GMM. The images used in the experiments were real MRI of the brain, and the dissertation objective is to segment the gray matter (GM) of the brain. The images are all in 3D, and the segmentations are made using 2D slices of the original image that pass through a preprocessing stage before, where the brain is extracted from the skull. The results show that the proposed method is successful, since, in all the applied techniques, there is an improvement in the accuracy rate, proved by the statistical test T-Test. Thus, the work shows that using the principles of combination of classifiers in medical image segmentation can obtain better results.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSegmentação. 3D. Imagens médicas. Combinação de classificadores. Ressonância magnética. Cérebro. Matéria cinza.Segmentation. 3D. Medical images. Classifiers combination. MRI. Brain. Gray matter.Segmentação de imagens 3D utilizando combinação de imagens 2Dinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDissertacao Caio Fernandes Araujo Versão Biblioteca.pdf.jpgDissertacao Caio Fernandes Araujo Versão Biblioteca.pdf.jpgGenerated Thumbnailimage/jpeg1303https://repositorio.ufpe.br/bitstream/123456789/21040/5/Dissertacao%20Caio%20Fernandes%20Araujo%20Vers%c3%a3o%20Biblioteca.pdf.jpgc7a902b4f579cff4cea1cae27f07cde6MD55ORIGINALDissertacao Caio Fernandes Araujo Versão Biblioteca.pdfDissertacao Caio Fernandes Araujo Versão Biblioteca.pdfapplication/pdf4719896https://repositorio.ufpe.br/bitstream/123456789/21040/1/Dissertacao%20Caio%20Fernandes%20Araujo%20Vers%c3%a3o%20Biblioteca.pdf223db1c4382e6f970dc2cd659978ab60MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/21040/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/21040/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDissertacao Caio Fernandes Araujo Versão Biblioteca.pdf.txtDissertacao Caio Fernandes Araujo Versão Biblioteca.pdf.txtExtracted texttext/plain192407https://repositorio.ufpe.br/bitstream/123456789/21040/4/Dissertacao%20Caio%20Fernandes%20Araujo%20Vers%c3%a3o%20Biblioteca.pdf.txt83c6fe67e2017ea70a61f2fcab2176edMD54123456789/210402019-10-25 07:21:25.099oai:repositorio.ufpe.br:123456789/21040TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T10:21:25Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Segmentação de imagens 3D utilizando combinação de imagens 2D
title Segmentação de imagens 3D utilizando combinação de imagens 2D
spellingShingle Segmentação de imagens 3D utilizando combinação de imagens 2D
ARAÚJO, Caio Fernandes
Segmentação. 3D. Imagens médicas. Combinação de classificadores. Ressonância magnética. Cérebro. Matéria cinza.
Segmentation. 3D. Medical images. Classifiers combination. MRI. Brain. Gray matter.
title_short Segmentação de imagens 3D utilizando combinação de imagens 2D
title_full Segmentação de imagens 3D utilizando combinação de imagens 2D
title_fullStr Segmentação de imagens 3D utilizando combinação de imagens 2D
title_full_unstemmed Segmentação de imagens 3D utilizando combinação de imagens 2D
title_sort Segmentação de imagens 3D utilizando combinação de imagens 2D
author ARAÚJO, Caio Fernandes
author_facet ARAÚJO, Caio Fernandes
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3055205407201109
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3084134533707587
dc.contributor.author.fl_str_mv ARAÚJO, Caio Fernandes
dc.contributor.advisor1.fl_str_mv REN, Tsang Ing
contributor_str_mv REN, Tsang Ing
dc.subject.por.fl_str_mv Segmentação. 3D. Imagens médicas. Combinação de classificadores. Ressonância magnética. Cérebro. Matéria cinza.
Segmentation. 3D. Medical images. Classifiers combination. MRI. Brain. Gray matter.
topic Segmentação. 3D. Imagens médicas. Combinação de classificadores. Ressonância magnética. Cérebro. Matéria cinza.
Segmentation. 3D. Medical images. Classifiers combination. MRI. Brain. Gray matter.
description Segmentar imagens de maneira automática é um grande desafio. Apesar do ser humano conseguir fazer essa distinção, em muitos casos, para um computador essa divisão pode não ser tão trivial. Vários aspectos têm de ser levados em consideração, que podem incluir cor, posição, vizinhanças, textura, entre outros. Esse desafio aumenta quando se passa a utilizar imagens médicas, como as ressonâncias magnéticas, pois essas, além de possuírem diferentes formatos dos órgãos em diferentes pessoas, possuem áreas em que a variação da intensidade dos pixels se mostra bastante sutil entre os vizinhos, o que dificulta a segmentação automática. Além disso, a variação citada não permite que haja um formato pré-definido em vários casos, pois as diferenças internas nos corpos dos pacientes, especialmente os que possuem alguma patologia, podem ser grandes demais para que se haja uma generalização. Mas justamente por esse possuírem esses problemas, são os principais focos dos profissionais que analisam as imagens médicas. Este trabalho visa, portanto, contribuir para a melhoria da segmentação dessas imagens médicas. Para isso, utiliza a ideia do Bagging de gerar diferentes imagens 2D para segmentar a partir de uma única imagem 3D, e conceitos de combinação de classificadores para uni-las, para assim conseguir resultados estatisticamente melhores, se comparados aos métodos populares de segmentação. Para se verificar a eficácia do método proposto, a segmentação das imagens foi feita utilizando quatro técnicas de segmentação diferentes, e seus resultados combinados. As técnicas escolhidas foram: binarização pelo método de Otsu, o K-Means, rede neural SOM e o modelo estatístico GMM. As imagens utilizadas nos experimentos foram imagens reais, de ressonâncias magnéticas do cérebro, e o intuito do trabalho foi segmentar a matéria cinza do cérebro. As imagens foram todas em 3D, e as segmentações foram feitas em fatias 2D da imagem original, que antes passa por uma fase de pré-processamento, onde há a extração do cérebro do crânio. Os resultados obtidos mostram que o método proposto se mostrou bem sucedido, uma vez que, em todas as técnicas utilizadas, houve uma melhoria na taxa de acerto da segmentação, comprovada através do teste estatístico T-Teste. Assim, o trabalho mostra que utilizar os princípios de combinação de classificadores em segmentações de imagens médicas pode apresentar resultados melhores.
publishDate 2016
dc.date.issued.fl_str_mv 2016-08-12
dc.date.accessioned.fl_str_mv 2017-08-30T18:18:42Z
dc.date.available.fl_str_mv 2017-08-30T18:18:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/21040
dc.identifier.dark.fl_str_mv ark:/64986/001300000bf6r
url https://repositorio.ufpe.br/handle/123456789/21040
identifier_str_mv ark:/64986/001300000bf6r
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/21040/5/Dissertacao%20Caio%20Fernandes%20Araujo%20Vers%c3%a3o%20Biblioteca.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/21040/1/Dissertacao%20Caio%20Fernandes%20Araujo%20Vers%c3%a3o%20Biblioteca.pdf
https://repositorio.ufpe.br/bitstream/123456789/21040/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/21040/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/21040/4/Dissertacao%20Caio%20Fernandes%20Araujo%20Vers%c3%a3o%20Biblioteca.pdf.txt
bitstream.checksum.fl_str_mv c7a902b4f579cff4cea1cae27f07cde6
223db1c4382e6f970dc2cd659978ab60
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
83c6fe67e2017ea70a61f2fcab2176ed
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172778323607552