Contribuições à teoria multilinear de operadores absolutamente somantes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000009r9b |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/17977 |
Resumo: | Neste trabalho estudamos algumas extens˜oes do conceito de operadores multilineares absolutamente somantes, generalizamos alguns resultados conhecidos e respondemos parcialmente alguns problemas abertos. Para a classe das aplica¸c˜oes absolutamente (p; q; r)-somantes, obtemos alguns resultados de coincidˆencia e inclus˜ao e mostramos que o ideal de polinˆomios absolutamente (p; q; r)-somantes n˜ao ´e corente, de acordo com a no¸c˜ao de ideais coerentes devida a D. Carando, V. Dimant e S. Muro. Para contornar esta falha, introduzimos o conceito de aplica¸c˜oes m´ultiplo (p; q; r)-somantes e mostramos que, com essa nova abordagem, o ideal de polinˆomios m´ultiplo (p; q; r)- somantes ´e coerente e compat´ıvel com o ideal de operadores lineares absolutamente (p; q; r)-somantes. |
id |
UFPE_762bef0162fb9fc6886c8d45b1406101 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/17977 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
BERNARDINO, Adriano Thiago Lopeshttp://buscatextual.cnpq.br/buscatextual/busca.dohttp://buscatextual.cnpq.br/buscatextual/busca.doPELLEGRINO, Daniel Marinho2016-10-11T18:36:34Z2016-10-11T18:36:34Z2016-06-17https://repositorio.ufpe.br/handle/123456789/17977ark:/64986/0013000009r9bNeste trabalho estudamos algumas extens˜oes do conceito de operadores multilineares absolutamente somantes, generalizamos alguns resultados conhecidos e respondemos parcialmente alguns problemas abertos. Para a classe das aplica¸c˜oes absolutamente (p; q; r)-somantes, obtemos alguns resultados de coincidˆencia e inclus˜ao e mostramos que o ideal de polinˆomios absolutamente (p; q; r)-somantes n˜ao ´e corente, de acordo com a no¸c˜ao de ideais coerentes devida a D. Carando, V. Dimant e S. Muro. Para contornar esta falha, introduzimos o conceito de aplica¸c˜oes m´ultiplo (p; q; r)-somantes e mostramos que, com essa nova abordagem, o ideal de polinˆomios m´ultiplo (p; q; r)- somantes ´e coerente e compat´ıvel com o ideal de operadores lineares absolutamente (p; q; r)-somantes.In this work we investigate some extensions of the concept of absolutely summing operators, generalize some known results and provide partial answers to some open questions. For the class of absolutely (p; q; r)-summing mappings we obtain some inclusion and coincidence results and show that the ideal of absolutely (p; q; r)-summing polynomials is not coherent, according to the notion of coherent ideals due to D. Carando, V. Dimant and S. Muro. In order to bypass this deficiency, we introduce the concept of multiple (p; q; r)-summing multilinear and polynomial operators and show that, with this new approach, the ideal of multiple (p; q; r)-summing polynomials is coherent and compatible with the ideal of absolutely (p; q; r)-summing operators.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAnálise.Análise funcional.Pellegrino.Pietsch Composition theorem, ideal of multilinear mappings, ideal of polynomials, absolutely summing mappings, multiple summing mappings, dominated mappings, cotype and type of Banach spaces, coherent ideals, compatible idealsContribuições à teoria multilinear de operadores absolutamente somantesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTese Adriano Thiago.pdf.jpgTese Adriano Thiago.pdf.jpgGenerated Thumbnailimage/jpeg1228https://repositorio.ufpe.br/bitstream/123456789/17977/5/Tese%20Adriano%20Thiago.pdf.jpg2aacb9787ffdf9795369f2cd79343808MD55ORIGINALTese Adriano Thiago.pdfTese Adriano Thiago.pdfapplication/pdf1085326https://repositorio.ufpe.br/bitstream/123456789/17977/1/Tese%20Adriano%20Thiago.pdf498b2bcfd47961466edce3360e11a858MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/17977/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/17977/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTese Adriano Thiago.pdf.txtTese Adriano Thiago.pdf.txtExtracted texttext/plain162528https://repositorio.ufpe.br/bitstream/123456789/17977/4/Tese%20Adriano%20Thiago.pdf.txte7e5ef7ac0c28cb6722801a64657607cMD54123456789/179772019-10-25 11:29:28.491oai:repositorio.ufpe.br:123456789/17977TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T14:29:28Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Contribuições à teoria multilinear de operadores absolutamente somantes |
title |
Contribuições à teoria multilinear de operadores absolutamente somantes |
spellingShingle |
Contribuições à teoria multilinear de operadores absolutamente somantes BERNARDINO, Adriano Thiago Lopes Análise.Análise funcional.Pellegrino. Pietsch Composition theorem, ideal of multilinear mappings, ideal of polynomials, absolutely summing mappings, multiple summing mappings, dominated mappings, cotype and type of Banach spaces, coherent ideals, compatible ideals |
title_short |
Contribuições à teoria multilinear de operadores absolutamente somantes |
title_full |
Contribuições à teoria multilinear de operadores absolutamente somantes |
title_fullStr |
Contribuições à teoria multilinear de operadores absolutamente somantes |
title_full_unstemmed |
Contribuições à teoria multilinear de operadores absolutamente somantes |
title_sort |
Contribuições à teoria multilinear de operadores absolutamente somantes |
author |
BERNARDINO, Adriano Thiago Lopes |
author_facet |
BERNARDINO, Adriano Thiago Lopes |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/busca.do |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/busca.do |
dc.contributor.author.fl_str_mv |
BERNARDINO, Adriano Thiago Lopes |
dc.contributor.advisor1.fl_str_mv |
PELLEGRINO, Daniel Marinho |
contributor_str_mv |
PELLEGRINO, Daniel Marinho |
dc.subject.por.fl_str_mv |
Análise.Análise funcional.Pellegrino. Pietsch Composition theorem, ideal of multilinear mappings, ideal of polynomials, absolutely summing mappings, multiple summing mappings, dominated mappings, cotype and type of Banach spaces, coherent ideals, compatible ideals |
topic |
Análise.Análise funcional.Pellegrino. Pietsch Composition theorem, ideal of multilinear mappings, ideal of polynomials, absolutely summing mappings, multiple summing mappings, dominated mappings, cotype and type of Banach spaces, coherent ideals, compatible ideals |
description |
Neste trabalho estudamos algumas extens˜oes do conceito de operadores multilineares absolutamente somantes, generalizamos alguns resultados conhecidos e respondemos parcialmente alguns problemas abertos. Para a classe das aplica¸c˜oes absolutamente (p; q; r)-somantes, obtemos alguns resultados de coincidˆencia e inclus˜ao e mostramos que o ideal de polinˆomios absolutamente (p; q; r)-somantes n˜ao ´e corente, de acordo com a no¸c˜ao de ideais coerentes devida a D. Carando, V. Dimant e S. Muro. Para contornar esta falha, introduzimos o conceito de aplica¸c˜oes m´ultiplo (p; q; r)-somantes e mostramos que, com essa nova abordagem, o ideal de polinˆomios m´ultiplo (p; q; r)- somantes ´e coerente e compat´ıvel com o ideal de operadores lineares absolutamente (p; q; r)-somantes. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-10-11T18:36:34Z |
dc.date.available.fl_str_mv |
2016-10-11T18:36:34Z |
dc.date.issued.fl_str_mv |
2016-06-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/17977 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000009r9b |
url |
https://repositorio.ufpe.br/handle/123456789/17977 |
identifier_str_mv |
ark:/64986/0013000009r9b |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/17977/5/Tese%20Adriano%20Thiago.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/17977/1/Tese%20Adriano%20Thiago.pdf https://repositorio.ufpe.br/bitstream/123456789/17977/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/17977/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/17977/4/Tese%20Adriano%20Thiago.pdf.txt |
bitstream.checksum.fl_str_mv |
2aacb9787ffdf9795369f2cd79343808 498b2bcfd47961466edce3360e11a858 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 e7e5ef7ac0c28cb6722801a64657607c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172771960848384 |