Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000vzb9 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/12351 |
Resumo: | Sistemas de Múltiplos Classificadores se tornaram uma alternativa quando se busca elevar o desempenho de um sistema de classificação. A ideia se baseia na combinação de diferentes classificadores, os quais devem ter visões complementares sobre um mesmo problema. Este trabalho apresenta uma metodologia para a geração dinâmica de comitês de classificadores, estratégia baseada na premissa de que nem todo classificador é um especialista em todo o espaço de características, de forma que a cada padrão a ser classificado, na fase de operação, é atribuído um comitê específico para esta tarefa. O sistema proposto neste trabalho opera em duas etapas. Na primeira, um conjunto inicial de classificadores é gerado utilizando uma metodologia consagrada na literatura, como por exemplo o algoritmo Bagging. Na segunda etapa, durante a fase de operação do sistema, para cada padrão a ser classificado, uma nota é atribuída a cada classificador do conjunto inicialmente gerado, os quais são ordenados em ordem decrescente de nota. Esta nota, chamada de valor de competência, representa o grau de aptidão que cada classificador possui para realizar classificações na região do espaço de características onde se localizam os padrões a serem classificados e é calculada com base no desempenho local dos classificadores sobre um conjunto de validação composto por dados não vistos durante o treinamento do conjunto inicial de classificadores. Neste cálculo é utilizada uma medida do desempenho de classificação de todo conjunto original de classificadores sobre cada padrão de validação, visando à estimação de valores de competências mais precisos. Em seguida, é aplicado um método proposto para a escolha da fração ideal do comitê ordenado a ser utilizada na classificação do padrão de teste atual. Este método define o tamanho do comitê dinamicamente. Foram realizados experimentos comparativos, sobre problemas de classificação binária, a partir dos quais a eficiência do método proposto é evidenciada. Experimentos mais específicos demonstraram que os métodos propostos para a extração dos valores de competência, bem como a definição dinâmica do tamanho do comitê, geram ambos, individualmente, contribuição positiva para os resultados do método. |
id |
UFPE_7a117cd8e93a569982684cd5d64a133b |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/12351 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
MORAIS, Paulo Fagner Tenório Barros deADEODATO, Paulo Jorge Leitão2015-03-13T12:53:03Z2015-03-13T12:53:03Z2013-02-28MORAIS, Paulo Fagner Tenório Barros de. Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte. Recife, 2013. 97 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013https://repositorio.ufpe.br/handle/123456789/12351ark:/64986/001300000vzb9Sistemas de Múltiplos Classificadores se tornaram uma alternativa quando se busca elevar o desempenho de um sistema de classificação. A ideia se baseia na combinação de diferentes classificadores, os quais devem ter visões complementares sobre um mesmo problema. Este trabalho apresenta uma metodologia para a geração dinâmica de comitês de classificadores, estratégia baseada na premissa de que nem todo classificador é um especialista em todo o espaço de características, de forma que a cada padrão a ser classificado, na fase de operação, é atribuído um comitê específico para esta tarefa. O sistema proposto neste trabalho opera em duas etapas. Na primeira, um conjunto inicial de classificadores é gerado utilizando uma metodologia consagrada na literatura, como por exemplo o algoritmo Bagging. Na segunda etapa, durante a fase de operação do sistema, para cada padrão a ser classificado, uma nota é atribuída a cada classificador do conjunto inicialmente gerado, os quais são ordenados em ordem decrescente de nota. Esta nota, chamada de valor de competência, representa o grau de aptidão que cada classificador possui para realizar classificações na região do espaço de características onde se localizam os padrões a serem classificados e é calculada com base no desempenho local dos classificadores sobre um conjunto de validação composto por dados não vistos durante o treinamento do conjunto inicial de classificadores. Neste cálculo é utilizada uma medida do desempenho de classificação de todo conjunto original de classificadores sobre cada padrão de validação, visando à estimação de valores de competências mais precisos. Em seguida, é aplicado um método proposto para a escolha da fração ideal do comitê ordenado a ser utilizada na classificação do padrão de teste atual. Este método define o tamanho do comitê dinamicamente. Foram realizados experimentos comparativos, sobre problemas de classificação binária, a partir dos quais a eficiência do método proposto é evidenciada. Experimentos mais específicos demonstraram que os métodos propostos para a extração dos valores de competência, bem como a definição dinâmica do tamanho do comitê, geram ambos, individualmente, contribuição positiva para os resultados do método.porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessComitês de classificadoresSeleção Dinâmica de ComitêsRegiões de CompetênciaAprendizado de máquinaGeração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDissertacao Paulo Fagner de Morais.pdf.jpgDissertacao Paulo Fagner de Morais.pdf.jpgGenerated Thumbnailimage/jpeg1355https://repositorio.ufpe.br/bitstream/123456789/12351/5/Dissertacao%20Paulo%20Fagner%20de%20Morais.pdf.jpg91203e50958905a65d051c99356b38eeMD55ORIGINALDissertacao Paulo Fagner de Morais.pdfDissertacao Paulo Fagner de Morais.pdfDissertação de mestradoapplication/pdf811388https://repositorio.ufpe.br/bitstream/123456789/12351/1/Dissertacao%20Paulo%20Fagner%20de%20Morais.pdfdbb1ec75e600e9e236c5cf37a52faedfMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/12351/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/12351/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDissertacao Paulo Fagner de Morais.pdf.txtDissertacao Paulo Fagner de Morais.pdf.txtExtracted texttext/plain189854https://repositorio.ufpe.br/bitstream/123456789/12351/4/Dissertacao%20Paulo%20Fagner%20de%20Morais.pdf.txt6169cd81fd2359a89898f8d7a5c456a5MD54123456789/123512019-10-25 19:36:27.249oai:repositorio.ufpe.br:123456789/12351TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T22:36:27Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte |
title |
Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte |
spellingShingle |
Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte MORAIS, Paulo Fagner Tenório Barros de Comitês de classificadores Seleção Dinâmica de Comitês Regiões de Competência Aprendizado de máquina |
title_short |
Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte |
title_full |
Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte |
title_fullStr |
Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte |
title_full_unstemmed |
Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte |
title_sort |
Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte |
author |
MORAIS, Paulo Fagner Tenório Barros de |
author_facet |
MORAIS, Paulo Fagner Tenório Barros de |
author_role |
author |
dc.contributor.author.fl_str_mv |
MORAIS, Paulo Fagner Tenório Barros de |
dc.contributor.advisor1.fl_str_mv |
ADEODATO, Paulo Jorge Leitão |
contributor_str_mv |
ADEODATO, Paulo Jorge Leitão |
dc.subject.por.fl_str_mv |
Comitês de classificadores Seleção Dinâmica de Comitês Regiões de Competência Aprendizado de máquina |
topic |
Comitês de classificadores Seleção Dinâmica de Comitês Regiões de Competência Aprendizado de máquina |
description |
Sistemas de Múltiplos Classificadores se tornaram uma alternativa quando se busca elevar o desempenho de um sistema de classificação. A ideia se baseia na combinação de diferentes classificadores, os quais devem ter visões complementares sobre um mesmo problema. Este trabalho apresenta uma metodologia para a geração dinâmica de comitês de classificadores, estratégia baseada na premissa de que nem todo classificador é um especialista em todo o espaço de características, de forma que a cada padrão a ser classificado, na fase de operação, é atribuído um comitê específico para esta tarefa. O sistema proposto neste trabalho opera em duas etapas. Na primeira, um conjunto inicial de classificadores é gerado utilizando uma metodologia consagrada na literatura, como por exemplo o algoritmo Bagging. Na segunda etapa, durante a fase de operação do sistema, para cada padrão a ser classificado, uma nota é atribuída a cada classificador do conjunto inicialmente gerado, os quais são ordenados em ordem decrescente de nota. Esta nota, chamada de valor de competência, representa o grau de aptidão que cada classificador possui para realizar classificações na região do espaço de características onde se localizam os padrões a serem classificados e é calculada com base no desempenho local dos classificadores sobre um conjunto de validação composto por dados não vistos durante o treinamento do conjunto inicial de classificadores. Neste cálculo é utilizada uma medida do desempenho de classificação de todo conjunto original de classificadores sobre cada padrão de validação, visando à estimação de valores de competências mais precisos. Em seguida, é aplicado um método proposto para a escolha da fração ideal do comitê ordenado a ser utilizada na classificação do padrão de teste atual. Este método define o tamanho do comitê dinamicamente. Foram realizados experimentos comparativos, sobre problemas de classificação binária, a partir dos quais a eficiência do método proposto é evidenciada. Experimentos mais específicos demonstraram que os métodos propostos para a extração dos valores de competência, bem como a definição dinâmica do tamanho do comitê, geram ambos, individualmente, contribuição positiva para os resultados do método. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-02-28 |
dc.date.accessioned.fl_str_mv |
2015-03-13T12:53:03Z |
dc.date.available.fl_str_mv |
2015-03-13T12:53:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MORAIS, Paulo Fagner Tenório Barros de. Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte. Recife, 2013. 97 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013 |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/12351 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000vzb9 |
identifier_str_mv |
MORAIS, Paulo Fagner Tenório Barros de. Geração dinâmica de comitês de classificadores através da ordenação de competências e estabelecimento de critério de corte. Recife, 2013. 97 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013 ark:/64986/001300000vzb9 |
url |
https://repositorio.ufpe.br/handle/123456789/12351 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/12351/5/Dissertacao%20Paulo%20Fagner%20de%20Morais.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/12351/1/Dissertacao%20Paulo%20Fagner%20de%20Morais.pdf https://repositorio.ufpe.br/bitstream/123456789/12351/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/12351/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/12351/4/Dissertacao%20Paulo%20Fagner%20de%20Morais.pdf.txt |
bitstream.checksum.fl_str_mv |
91203e50958905a65d051c99356b38ee dbb1ec75e600e9e236c5cf37a52faedf 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 6169cd81fd2359a89898f8d7a5c456a5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172929671921664 |