Circuit-based quantum random access memory for sparse quantum state preparation

Detalhes bibliográficos
Autor(a) principal: VERAS, Tiago Mendonça Lucena de
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000033hm
Texto Completo: https://repositorio.ufpe.br/handle/123456789/41848
Resumo: In order to use a quantum device to assess a classical dataset D, we need to representthe set D in a quantum state. Applying a quantum algorithm, that is a quantum state preparation algorithm, to convert classical data into quantum data would be the common method. Loading classical data into a quantum device is required in many current applications. Efficiently preparing a quantum state to be used as the initial state of a quantum algorithm is an essential step in developing efficient quantum algorithms, since many algorithms need to reload the initial state several times during their execution. The cost to initialize a quantum state can compromise the algorithm efficiency if the process of quantum states preparation is not efficient. The topic of quantum states preparation in quantum computing has been the focus of much attention. In this scope, preparing sparse quantum states is a more specific problem that remains open since many quantum algorithms also require sparse initialization. This dissertation presents the results of an investigation on sparse quantum states preparation with the development of three algorithms, with highlight to the preparation of sparse quantum states, the main contributionof this dissertation. From a classical input dataset with M patterns formed by pairs composed of a complex number and a binary pattern with n bits, this algorithm can prepare a quantum state with n qubits and continuous amplitudes. The cost of its steps is O(nM), classical cost of o(MlogM+nM)and requires a lower CNOT number than the main quantum state preparation algorithms currently known. The preparation of a quantumstate with 2 non-zero amplitudes reveals the need of fewer CNOT gates in n>>1 relation to the main known state preparation algorithms, with even more favorable results with s higher and less 1S in the binary string.
id UFPE_7ef04b3364e4c3f8f9fdbafc7b7a7f71
oai_identifier_str oai:repositorio.ufpe.br:123456789/41848
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling VERAS, Tiago Mendonça Lucena dehttp://lattes.cnpq.br/0549911789240539http://lattes.cnpq.br/1825502153580661http://lattes.cnpq.br/0314035098884256QUEIROZ, Ruy José Guerra Barretto deSILVA, Adenilton José da2021-11-29T19:27:57Z2021-11-29T19:27:57Z2021-09-13VERAS, Tiago Mendonça Lucena de. Circuit-based quantum random access memory for sparse quantum state preparation. 2021. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/41848ark:/64986/00130000033hmIn order to use a quantum device to assess a classical dataset D, we need to representthe set D in a quantum state. Applying a quantum algorithm, that is a quantum state preparation algorithm, to convert classical data into quantum data would be the common method. Loading classical data into a quantum device is required in many current applications. Efficiently preparing a quantum state to be used as the initial state of a quantum algorithm is an essential step in developing efficient quantum algorithms, since many algorithms need to reload the initial state several times during their execution. The cost to initialize a quantum state can compromise the algorithm efficiency if the process of quantum states preparation is not efficient. The topic of quantum states preparation in quantum computing has been the focus of much attention. In this scope, preparing sparse quantum states is a more specific problem that remains open since many quantum algorithms also require sparse initialization. This dissertation presents the results of an investigation on sparse quantum states preparation with the development of three algorithms, with highlight to the preparation of sparse quantum states, the main contributionof this dissertation. From a classical input dataset with M patterns formed by pairs composed of a complex number and a binary pattern with n bits, this algorithm can prepare a quantum state with n qubits and continuous amplitudes. The cost of its steps is O(nM), classical cost of o(MlogM+nM)and requires a lower CNOT number than the main quantum state preparation algorithms currently known. The preparation of a quantumstate with 2 non-zero amplitudes reveals the need of fewer CNOT gates in n>>1 relation to the main known state preparation algorithms, with even more favorable results with s higher and less 1S in the binary string.Com objetivo de usar um dispositivo quântico para avaliar um conjunto de dados clássicos D, precisamos representar o conjunto D em um estado quântico. Aplicar um algoritmo quântico, que é um algoritmo de preparação de estados quânticos, para converter dados clássicos em dados quânticos seria o método comum. Carregar dados clássicos em um dispositivo quântico é necessário em muitas aplicações atuais. A preparação eficientede um estado quântico para ser utilizado como o estado inicial de um algoritmo quântico é uma etapa essencial no desenvolvimento de algoritmos quânticos eficientes, uma vez quemuitos algoritmos precisam recarregar o estado inicial várias vezes durante sua execução. O custo para inicializar um estado quântico pode comprometer a eficiência do algoritmo se o processo de preparação dos estados quânticos não for eficiente. O tópico da preparação de estados quânticos na computação quântica tem sido o foco de muita atenção. Nesse escopo, a preparação de estados quânticos esparsos é um problema mais específico que permanece em aberto, uma vez que muitos algoritmos quânticos também requerem inicialização esparsa. Esta tese apresenta os resultados de uma investigação sobre a preparação de estados quânticos esparsos com o desenvolvimento de três algoritmos, com destaque para a preparação de estados quânticos esparsos, principal contribuição desta tese. Apartir de um conjunto de dados de entrada clássico com M padrões, formados por pares compostos por um número complexo e um padrão binário com n bits, este algoritmo pode preparar um estado quântico com n qubits e amplitudes contínuas. O custo de passos é O(nM), o custo clássico é de O(MlogM+nM)e requer um número de CNOT menor do que os principais algoritmos de preparação de estado quântico conhecidos atualmente. Na preparação de um estado quântico com 2 amplitudes diferentes de zero, revela a necessidade de menos portas CNOT quando n>>1 em relação aos principais algoritmos de preparação de estado conhecidos, com resultados ainda mais favoráveis com s maior e menor 1s na string binária.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessTeoria da computaçãoComputação quânticaCircuit-based quantum random access memory for sparse quantum state preparationinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Tiago Mendonça Lucena de Veras.pdfTESE Tiago Mendonça Lucena de Veras.pdfapplication/pdf2448463https://repositorio.ufpe.br/bitstream/123456789/41848/1/TESE%20Tiago%20Mendon%c3%a7a%20Lucena%20de%20Veras.pdf848e6e43745de4f17f296a3e727a1140MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81908https://repositorio.ufpe.br/bitstream/123456789/41848/3/license.txtc59d330e2c454f71974f5866a0e8a96aMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/41848/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52TEXTTESE Tiago Mendonça Lucena de Veras.pdf.txtTESE Tiago Mendonça Lucena de Veras.pdf.txtExtracted texttext/plain211266https://repositorio.ufpe.br/bitstream/123456789/41848/4/TESE%20Tiago%20Mendon%c3%a7a%20Lucena%20de%20Veras.pdf.txt7588625abb7c61da8a226b6a1816124fMD54THUMBNAILTESE Tiago Mendonça Lucena de Veras.pdf.jpgTESE Tiago Mendonça Lucena de Veras.pdf.jpgGenerated Thumbnailimage/jpeg1237https://repositorio.ufpe.br/bitstream/123456789/41848/5/TESE%20Tiago%20Mendon%c3%a7a%20Lucena%20de%20Veras.pdf.jpgcbb28d8267f418738682da8ea989c0fbMD55123456789/418482021-11-30 02:09:08.818oai:repositorio.ufpe.br:123456789/41848VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBUcmFiYWxob3MgQWNhZMOqbWljb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKRGVjbGFybyBwYXJhIG9zIGRldmlkb3MgZmlucyBkZXN0ZSBUZXJtbyBkZSBEZXDDs3NpdG8gTGVnYWwgZSBBdXRvcml6YcOnw6NvIHBhcmEgUHVibGljYcOnw6NvIGRlIFRyYWJhbGhvcyBBY2Fkw6ptaWNvcyBubyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIHF1ZSBlc3RvdSBjaWVudGUgcXVlOgpJIC0gbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIG1pbmhhIGludGVpcmEgcmVzcG9uc2FiaWxpZGFkZTsKSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwpJSUkgLSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIHRyYWJhbGhvIGFww7NzIG8gZGVww7NzaXRvIGUgYW50ZXMgZGUgZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbywgcXVhbmRvIGZvciBlc2NvbGhpZG8gYWNlc3NvIHJlc3RyaXRvLCBzZXLDoSBwZXJtaXRpZGEgbWVkaWFudGUgc29saWNpdGHDp8OjbyBkbyAoYSkgYXV0b3IgKGEpIGFvIFNpc3RlbWEgSW50ZWdyYWRvIGRlIEJpYmxpb3RlY2FzIGRhIFVGUEUgKFNJQi9VRlBFKS4KIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gYWJlcnRvOgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIFRyYWJhbGhvIEFjYWTDqm1pY28sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuMTYwIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgpQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gcmVzdHJpdG86Ck5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS4xNjAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgYXTDqSAwMSBhbm8gZGUgZW1iYXJnbywgY29uZm9ybWUgaW5mb3JtYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212021-11-30T05:09:08Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Circuit-based quantum random access memory for sparse quantum state preparation
title Circuit-based quantum random access memory for sparse quantum state preparation
spellingShingle Circuit-based quantum random access memory for sparse quantum state preparation
VERAS, Tiago Mendonça Lucena de
Teoria da computação
Computação quântica
title_short Circuit-based quantum random access memory for sparse quantum state preparation
title_full Circuit-based quantum random access memory for sparse quantum state preparation
title_fullStr Circuit-based quantum random access memory for sparse quantum state preparation
title_full_unstemmed Circuit-based quantum random access memory for sparse quantum state preparation
title_sort Circuit-based quantum random access memory for sparse quantum state preparation
author VERAS, Tiago Mendonça Lucena de
author_facet VERAS, Tiago Mendonça Lucena de
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0549911789240539
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/1825502153580661
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0314035098884256
dc.contributor.author.fl_str_mv VERAS, Tiago Mendonça Lucena de
dc.contributor.advisor1.fl_str_mv QUEIROZ, Ruy José Guerra Barretto de
dc.contributor.advisor-co1.fl_str_mv SILVA, Adenilton José da
contributor_str_mv QUEIROZ, Ruy José Guerra Barretto de
SILVA, Adenilton José da
dc.subject.por.fl_str_mv Teoria da computação
Computação quântica
topic Teoria da computação
Computação quântica
description In order to use a quantum device to assess a classical dataset D, we need to representthe set D in a quantum state. Applying a quantum algorithm, that is a quantum state preparation algorithm, to convert classical data into quantum data would be the common method. Loading classical data into a quantum device is required in many current applications. Efficiently preparing a quantum state to be used as the initial state of a quantum algorithm is an essential step in developing efficient quantum algorithms, since many algorithms need to reload the initial state several times during their execution. The cost to initialize a quantum state can compromise the algorithm efficiency if the process of quantum states preparation is not efficient. The topic of quantum states preparation in quantum computing has been the focus of much attention. In this scope, preparing sparse quantum states is a more specific problem that remains open since many quantum algorithms also require sparse initialization. This dissertation presents the results of an investigation on sparse quantum states preparation with the development of three algorithms, with highlight to the preparation of sparse quantum states, the main contributionof this dissertation. From a classical input dataset with M patterns formed by pairs composed of a complex number and a binary pattern with n bits, this algorithm can prepare a quantum state with n qubits and continuous amplitudes. The cost of its steps is O(nM), classical cost of o(MlogM+nM)and requires a lower CNOT number than the main quantum state preparation algorithms currently known. The preparation of a quantumstate with 2 non-zero amplitudes reveals the need of fewer CNOT gates in n>>1 relation to the main known state preparation algorithms, with even more favorable results with s higher and less 1S in the binary string.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-11-29T19:27:57Z
dc.date.available.fl_str_mv 2021-11-29T19:27:57Z
dc.date.issued.fl_str_mv 2021-09-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VERAS, Tiago Mendonça Lucena de. Circuit-based quantum random access memory for sparse quantum state preparation. 2021. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/41848
dc.identifier.dark.fl_str_mv ark:/64986/00130000033hm
identifier_str_mv VERAS, Tiago Mendonça Lucena de. Circuit-based quantum random access memory for sparse quantum state preparation. 2021. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.
ark:/64986/00130000033hm
url https://repositorio.ufpe.br/handle/123456789/41848
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/41848/1/TESE%20Tiago%20Mendon%c3%a7a%20Lucena%20de%20Veras.pdf
https://repositorio.ufpe.br/bitstream/123456789/41848/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/41848/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/41848/4/TESE%20Tiago%20Mendon%c3%a7a%20Lucena%20de%20Veras.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/41848/5/TESE%20Tiago%20Mendon%c3%a7a%20Lucena%20de%20Veras.pdf.jpg
bitstream.checksum.fl_str_mv 848e6e43745de4f17f296a3e727a1140
c59d330e2c454f71974f5866a0e8a96a
e39d27027a6cc9cb039ad269a5db8e34
7588625abb7c61da8a226b6a1816124f
cbb28d8267f418738682da8ea989c0fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172706743615488