Strongly correlated electrons on the honeycombb lattice: magnetism and superconductivity

Detalhes bibliográficos
Autor(a) principal: RIBEIRO, Fábio Gomes
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000012dnb
Texto Completo: https://repositorio.ufpe.br/handle/123456789/26571
Resumo: In view of quite recent experimental activities on magnetic and superconducting properties of honeycomb and hexagonal lattice based materials, in this thesis we have used field-theoretic and many-body methods to investigate magnetic and superconducting properties of the large-U Hubbard model on the honeycomb lattice at half-filling and in the hole-doped regime. Within the framework of a functional-integral approach, we obtain the Lagrangian density associated with the charge (Grassmann fields) and spin [SU(2) gauge fields] degrees of freedom. The Hamiltonian related to the charge degrees of freedom is exactly diagonalized. In the strong-coupling regime, we derive a perturbative low-energy theory suitable to describe the (quantum) magnetic and superconducting phases at half-filling and in the hole-doped regime. At half-filling, we deal with the underlying spin degrees of freedom of the quantum antiferromagnetic (AF) Heisenberg model by employing a second-order spin-wave analysis, in which case we have calculated the ground-state energy and the staggered magnetization; the results are in very good agreement with previous studies. Further, in the continuum, we derive a nonlinear σ-model with a topological Hopf term that describes the AF-VBS (valence bond solid) competition. In the challenging hole-doped regime, our approach allows the derivation of a t-J Hamiltonian, and the analysis of the role played by charge and spin quantum fluctuations on the ground-state energy and, particularly, on the breakdown of the AF order at a critical hole doping; the results are benchmarked against recent Grassmann tensor product state simulations. In addition, we have performed an extensive study of the electronic structure of the doped system for each competing phase: AF, ferromagnetic (FM), and (spin-singlet pairing) s-, dx₂₋ʏ₂ – and idxʏ -wave superconducting (SC) state induced by purely electronic effects. In this context, an energetic analysis of the ground state of these phases reveal that the AF order prevails for low hole doping, while a dominantly chiral dx₂₋ʏ₂ + idxʏ superconducting state was found in the vicinity of the Van Hove singularity (high hole doping). We also stress that a thermodynamic analysis of the superconducting phase shows that the critical temperature is directly related to the exchange constant J = 4t²/U, in which t denotes the hopping amplitude and U the on-site Coulomb repulsion of the Hubbard model (purely electronic origin). Remarkably, the competition between the AF and dx₂₋ʏ₂ + idxʏ SC phases takes place by the occurrence of a first-order transition accompanied by a spatial phase separation of the referred phases.
id UFPE_836e106d461dd52eec91be80e7f6ef20
oai_identifier_str oai:repositorio.ufpe.br:123456789/26571
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling RIBEIRO, Fábio Gomeshttp://lattes.cnpq.br/8336413575389063http://lattes.cnpq.br/4862700714316793COUTINHO FILHO, Maurício Domingues2018-09-14T21:43:43Z2018-09-14T21:43:43Z2015-08-28https://repositorio.ufpe.br/handle/123456789/26571ark:/64986/0013000012dnbIn view of quite recent experimental activities on magnetic and superconducting properties of honeycomb and hexagonal lattice based materials, in this thesis we have used field-theoretic and many-body methods to investigate magnetic and superconducting properties of the large-U Hubbard model on the honeycomb lattice at half-filling and in the hole-doped regime. Within the framework of a functional-integral approach, we obtain the Lagrangian density associated with the charge (Grassmann fields) and spin [SU(2) gauge fields] degrees of freedom. The Hamiltonian related to the charge degrees of freedom is exactly diagonalized. In the strong-coupling regime, we derive a perturbative low-energy theory suitable to describe the (quantum) magnetic and superconducting phases at half-filling and in the hole-doped regime. At half-filling, we deal with the underlying spin degrees of freedom of the quantum antiferromagnetic (AF) Heisenberg model by employing a second-order spin-wave analysis, in which case we have calculated the ground-state energy and the staggered magnetization; the results are in very good agreement with previous studies. Further, in the continuum, we derive a nonlinear σ-model with a topological Hopf term that describes the AF-VBS (valence bond solid) competition. In the challenging hole-doped regime, our approach allows the derivation of a t-J Hamiltonian, and the analysis of the role played by charge and spin quantum fluctuations on the ground-state energy and, particularly, on the breakdown of the AF order at a critical hole doping; the results are benchmarked against recent Grassmann tensor product state simulations. In addition, we have performed an extensive study of the electronic structure of the doped system for each competing phase: AF, ferromagnetic (FM), and (spin-singlet pairing) s-, dx₂₋ʏ₂ – and idxʏ -wave superconducting (SC) state induced by purely electronic effects. In this context, an energetic analysis of the ground state of these phases reveal that the AF order prevails for low hole doping, while a dominantly chiral dx₂₋ʏ₂ + idxʏ superconducting state was found in the vicinity of the Van Hove singularity (high hole doping). We also stress that a thermodynamic analysis of the superconducting phase shows that the critical temperature is directly related to the exchange constant J = 4t²/U, in which t denotes the hopping amplitude and U the on-site Coulomb repulsion of the Hubbard model (purely electronic origin). Remarkably, the competition between the AF and dx₂₋ʏ₂ + idxʏ SC phases takes place by the occurrence of a first-order transition accompanied by a spatial phase separation of the referred phases.CNPqDiante dos recentes resultados experimentais sobre propriedades magnéticas e supercontudoras de materias compostos com estruturas cristalinas “rede colmeia" (honeycomb) e hexagonal, nesta tese utilizamos métodos da teoria de campos e da teoria quântica de muitos corpos para investigar as propriedades magnéticas e supercondutoras do modelo de Hubbard no limite de acoplamento forte na rede honeycomb, incluindo os regimes de banda semicheia e dopada (buracos). No âmbito do formalismo de integração funcional, obtivemos uma densidade de lagrangiana associada aos graus de liberdade de carga (campos de Grassmann) e de spin [campos de calibre SU(2)]. O hamiltoniano relacionado aos graus de liberdade de carga é exatamente diagonalizado. No regime de acoplamento forte, derivamos uma teoria perturbativa de baixa energia adequada para descrever as fases (quânticas) magnéticas e supercondutoras nos regimes de banda semi-cheia e dopada por buracos. No regime de banda semi-cheia investigamos os efeitos das flutuações quânticas de spin na fase antiferromagnética (AF) no contexto do modelo de Heisenberg, utilizando uma teoria perturbativa de ondas de spin até O (1/S²), onde S é a magnitude do spin. Com efeito, calculamos a energia do estado fundamental e a magnetização por sítio, cujos resultados estão em boa concordância com estudos anteriores. Além disso, analisamos a competição AF-VBS (estado cristalino de ligação de valência) por meio do modelo σ não-linear com a presença do termo topológico de Hopf. No desafiante regime dopado por buracos, nossa abordagem possibilitou a derivação de um hamiltoniano t-J e a análise do papel desempenhado pelas flutuações quânticas de carga e de spin na energia do estado fundamental da fase AF e, principalmente, no colapso da fase AF para uma dopagem crítica; os resultados são aferidos com recentes simulações de Grassmann tensor product state. Em adição, realizamos um estudo extensivo das estruturas eletrônicas do sistema dopado para cada fase competidora, na ausência de flutuações quânticas de spin: AF, ferromagnética (FM) e supercondutora (SC) induzida por efeitos puramente eletrônicos com simetria (pareamento tipo singleto) s, dx₂₋ʏ₂ ou dxʏ. Neste contexto, uma análise energética do estado fundamental dessas fases revela que a fase AF prevalece no regime de baixa dopagem, enquanto que o estado supercondutor com simetria quiral dx₂₋ʏ₂ + idxʏ predomina nas proximidades da singularidade de Van Hove (regime de alta dopagem). Destacamos ainda que uma análise termodinâmica da fase supercondutora demonstra que a temperatura crítica está diretamente relacionada à constante de troca J = 4t²/U, onde t é a amplitude de hopping e U é a repulsão coulombiana intra-sítio do modelo de Hubbard (origem puramente eletrônica). Finalmente, ressaltamos que a competição entre as fases AF - dx₂₋ʏ₂ + idxʏ SC se manifesta pela ocorrência de uma transição de primeira ordem acompanhada da separação espacial das referidas fases.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFísica da matéria condensadaElétrons fortemente correlacionadosStrongly correlated electrons on the honeycombb lattice: magnetism and superconductivityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Fábio Gomes Ribeiro.pdf.jpgTESE Fábio Gomes Ribeiro.pdf.jpgGenerated Thumbnailimage/jpeg1253https://repositorio.ufpe.br/bitstream/123456789/26571/5/TESE%20F%c3%a1bio%20Gomes%20Ribeiro.pdf.jpg8f36527d52b277a8584ebbc2e3eefd2fMD55ORIGINALTESE Fábio Gomes Ribeiro.pdfTESE Fábio Gomes Ribeiro.pdfapplication/pdf10740890https://repositorio.ufpe.br/bitstream/123456789/26571/1/TESE%20F%c3%a1bio%20Gomes%20Ribeiro.pdfd8441636ef0750349f292a0d79c31be3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/26571/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/26571/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE Fábio Gomes Ribeiro.pdf.txtTESE Fábio Gomes Ribeiro.pdf.txtExtracted texttext/plain189256https://repositorio.ufpe.br/bitstream/123456789/26571/4/TESE%20F%c3%a1bio%20Gomes%20Ribeiro.pdf.txt45a225ea5d3456f42644afa82f4ce056MD54123456789/265712019-10-25 09:54:00.624oai:repositorio.ufpe.br:123456789/26571TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T12:54Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Strongly correlated electrons on the honeycombb lattice: magnetism and superconductivity
title Strongly correlated electrons on the honeycombb lattice: magnetism and superconductivity
spellingShingle Strongly correlated electrons on the honeycombb lattice: magnetism and superconductivity
RIBEIRO, Fábio Gomes
Física da matéria condensada
Elétrons fortemente correlacionados
title_short Strongly correlated electrons on the honeycombb lattice: magnetism and superconductivity
title_full Strongly correlated electrons on the honeycombb lattice: magnetism and superconductivity
title_fullStr Strongly correlated electrons on the honeycombb lattice: magnetism and superconductivity
title_full_unstemmed Strongly correlated electrons on the honeycombb lattice: magnetism and superconductivity
title_sort Strongly correlated electrons on the honeycombb lattice: magnetism and superconductivity
author RIBEIRO, Fábio Gomes
author_facet RIBEIRO, Fábio Gomes
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8336413575389063
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4862700714316793
dc.contributor.author.fl_str_mv RIBEIRO, Fábio Gomes
dc.contributor.advisor1.fl_str_mv COUTINHO FILHO, Maurício Domingues
contributor_str_mv COUTINHO FILHO, Maurício Domingues
dc.subject.por.fl_str_mv Física da matéria condensada
Elétrons fortemente correlacionados
topic Física da matéria condensada
Elétrons fortemente correlacionados
description In view of quite recent experimental activities on magnetic and superconducting properties of honeycomb and hexagonal lattice based materials, in this thesis we have used field-theoretic and many-body methods to investigate magnetic and superconducting properties of the large-U Hubbard model on the honeycomb lattice at half-filling and in the hole-doped regime. Within the framework of a functional-integral approach, we obtain the Lagrangian density associated with the charge (Grassmann fields) and spin [SU(2) gauge fields] degrees of freedom. The Hamiltonian related to the charge degrees of freedom is exactly diagonalized. In the strong-coupling regime, we derive a perturbative low-energy theory suitable to describe the (quantum) magnetic and superconducting phases at half-filling and in the hole-doped regime. At half-filling, we deal with the underlying spin degrees of freedom of the quantum antiferromagnetic (AF) Heisenberg model by employing a second-order spin-wave analysis, in which case we have calculated the ground-state energy and the staggered magnetization; the results are in very good agreement with previous studies. Further, in the continuum, we derive a nonlinear σ-model with a topological Hopf term that describes the AF-VBS (valence bond solid) competition. In the challenging hole-doped regime, our approach allows the derivation of a t-J Hamiltonian, and the analysis of the role played by charge and spin quantum fluctuations on the ground-state energy and, particularly, on the breakdown of the AF order at a critical hole doping; the results are benchmarked against recent Grassmann tensor product state simulations. In addition, we have performed an extensive study of the electronic structure of the doped system for each competing phase: AF, ferromagnetic (FM), and (spin-singlet pairing) s-, dx₂₋ʏ₂ – and idxʏ -wave superconducting (SC) state induced by purely electronic effects. In this context, an energetic analysis of the ground state of these phases reveal that the AF order prevails for low hole doping, while a dominantly chiral dx₂₋ʏ₂ + idxʏ superconducting state was found in the vicinity of the Van Hove singularity (high hole doping). We also stress that a thermodynamic analysis of the superconducting phase shows that the critical temperature is directly related to the exchange constant J = 4t²/U, in which t denotes the hopping amplitude and U the on-site Coulomb repulsion of the Hubbard model (purely electronic origin). Remarkably, the competition between the AF and dx₂₋ʏ₂ + idxʏ SC phases takes place by the occurrence of a first-order transition accompanied by a spatial phase separation of the referred phases.
publishDate 2015
dc.date.issued.fl_str_mv 2015-08-28
dc.date.accessioned.fl_str_mv 2018-09-14T21:43:43Z
dc.date.available.fl_str_mv 2018-09-14T21:43:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/26571
dc.identifier.dark.fl_str_mv ark:/64986/0013000012dnb
url https://repositorio.ufpe.br/handle/123456789/26571
identifier_str_mv ark:/64986/0013000012dnb
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Fisica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/26571/5/TESE%20F%c3%a1bio%20Gomes%20Ribeiro.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/26571/1/TESE%20F%c3%a1bio%20Gomes%20Ribeiro.pdf
https://repositorio.ufpe.br/bitstream/123456789/26571/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/26571/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/26571/4/TESE%20F%c3%a1bio%20Gomes%20Ribeiro.pdf.txt
bitstream.checksum.fl_str_mv 8f36527d52b277a8584ebbc2e3eefd2f
d8441636ef0750349f292a0d79c31be3
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
45a225ea5d3456f42644afa82f4ce056
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172981075214336