Classificação baseada em protótipos de decisão mais próximos e distâncias adaptativas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000r53t |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/29396 |
Resumo: | A aprendizagem de máquina é um ramo da inteligência artificial, cujo objetivo é desenvolver algoritmos capazes de aprender a partir de dados a fim de realizar diferentes tarefas, como por exemplo, classificação e estimação de probabilidades de classe supervisionadas e semi-supervisionadas. Essas tarefas podem ser realizadas de forma intuitiva e com predições interpretáveis pelos métodos baseados em protótipos. Quanto a esses métodos, é preciso considerar dois pontos importantes: (i) são suscetíveis a mínimos locais causados pela má inicialização dos protótipos e (ii) são sensíveis à distância escolhida para comparar protótipos e instâncias, pois essa precisa ser capaz de modelar a variabilidade interna dos protótipos e classes para alcançar um bom desempenho. Assim, este trabalho visa a explorar a versatilidade dos métodos baseados em protótipos para apresentar soluções para as tarefas de classificação supervisionada e semi-supervisionada, ao mesmo tempo em que apresenta soluções para os dois pontos mencionados acima, principalmente na forma de novas distâncias adaptativas. Para a primeira tarefa, este trabalho introduz um novo método que apresenta uma solução para o problema dos mínimos locais e usa uma distância generalizada aplicada a dados intervalares, capaz de modelar classes desbalanceadas e sub-regiões de classe de diferentes formas e tamanhos. Esse algoritmo também é capaz de eliminar protótipos inativos e selecionar atributos automaticamente. Para a tarefa de classificação semi-supervisionada, este trabalho propõe um algoritmo de propagação de rótulos através de grafos que, ao contrário dos métodos presentes na literatura, não foca apenas na classificação de instâncias não-rotuladas, mas sim na predição de probabilidades de classe apropriadas. Este trabalho também provê uma análise de desempenho dos dois métodos propostos, comparando-os a métodos existentes, em termos de taxa de erro de classificação (primeiro método) e funções de escore apropriadas (segundo método), usando conjuntos de dados reais e sintéticos. Experimentos mostram que ambos os métodos apresentam desempenhos significativamente superiores ao estado da arte. |
id |
UFPE_837f7f3eed5610e2d214c4bb92c96258 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/29396 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SILVA FILHO, Telmo de Menezes ehttp://lattes.cnpq.br/4640945954423515http://lattes.cnpq.br/9289080285504453SOUZA, Renata Maria Cardoso Rodrigues dePRUDÊNCIO, Ricardo Bastos Cavalcante2019-02-21T22:42:28Z2019-02-21T22:42:28Z2017-09-22https://repositorio.ufpe.br/handle/123456789/29396ark:/64986/001300000r53tA aprendizagem de máquina é um ramo da inteligência artificial, cujo objetivo é desenvolver algoritmos capazes de aprender a partir de dados a fim de realizar diferentes tarefas, como por exemplo, classificação e estimação de probabilidades de classe supervisionadas e semi-supervisionadas. Essas tarefas podem ser realizadas de forma intuitiva e com predições interpretáveis pelos métodos baseados em protótipos. Quanto a esses métodos, é preciso considerar dois pontos importantes: (i) são suscetíveis a mínimos locais causados pela má inicialização dos protótipos e (ii) são sensíveis à distância escolhida para comparar protótipos e instâncias, pois essa precisa ser capaz de modelar a variabilidade interna dos protótipos e classes para alcançar um bom desempenho. Assim, este trabalho visa a explorar a versatilidade dos métodos baseados em protótipos para apresentar soluções para as tarefas de classificação supervisionada e semi-supervisionada, ao mesmo tempo em que apresenta soluções para os dois pontos mencionados acima, principalmente na forma de novas distâncias adaptativas. Para a primeira tarefa, este trabalho introduz um novo método que apresenta uma solução para o problema dos mínimos locais e usa uma distância generalizada aplicada a dados intervalares, capaz de modelar classes desbalanceadas e sub-regiões de classe de diferentes formas e tamanhos. Esse algoritmo também é capaz de eliminar protótipos inativos e selecionar atributos automaticamente. Para a tarefa de classificação semi-supervisionada, este trabalho propõe um algoritmo de propagação de rótulos através de grafos que, ao contrário dos métodos presentes na literatura, não foca apenas na classificação de instâncias não-rotuladas, mas sim na predição de probabilidades de classe apropriadas. Este trabalho também provê uma análise de desempenho dos dois métodos propostos, comparando-os a métodos existentes, em termos de taxa de erro de classificação (primeiro método) e funções de escore apropriadas (segundo método), usando conjuntos de dados reais e sintéticos. Experimentos mostram que ambos os métodos apresentam desempenhos significativamente superiores ao estado da arte.CNPqMachine learning is a subfield of artificial intelligence, whose goal is to develop algorithms that are able to learn from data in order to perform different tasks, such as supervised and semi-supervised classification and probability estimation. These tasks can be performed intuitively and with interpretable predictions by prototype-based methods. Regarding these methods, one needs to consider two important points: (i) they are susceptible to local minima due to poor prototype initialization and (ii) they are sensible to the distance that is chosen to compare prototypes and samples, because it has to be able to model the internal variability of prototypes and classes to perform well. Therefore, this work aims at exploring the versatility of prototype-based methods to provide solutions to the tasks of supervised and semi-supervised classification, while also presenting solutions to both points mentioned above, especially regarding new adaptive distances. For the first task, this work introduces a new method that provides a solution to the local minima problem and uses a generalized distance applied to interval data, which is capable of modeling imbalanced classes and class subregions with different shapes and sizes. This algorithm is also capable of eliminating inactive prototypes and automatically selecting features. For the semi-supervised classification task, this work proposes a graph-based label propagation algorithm, which, in contrast to existing methods from literature, does not focus only on unlabeled instance classification, but on the prediction of proper class probabilities. This work also provides a performance analysis of the two proposed methods, comparing them to existing algorithms, in terms of classification error rate (first method) and proper scoring rules (second method), using real and synthetic datasets. Experiments show that both methods perform significantly better than the state of the art.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência computacionalAprendizado de computadorInteligência artificialClassificação baseada em protótipos de decisão mais próximos e distâncias adaptativasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Telmo de Menezes e Silva Filho.pdf.jpgTESE Telmo de Menezes e Silva Filho.pdf.jpgGenerated Thumbnailimage/jpeg1266https://repositorio.ufpe.br/bitstream/123456789/29396/5/TESE%20Telmo%20de%20Menezes%20e%20Silva%20Filho.pdf.jpgf065d8556a8be3a57683d67bb8aee13fMD55ORIGINALTESE Telmo de Menezes e Silva Filho.pdfTESE Telmo de Menezes e Silva Filho.pdfapplication/pdf1150006https://repositorio.ufpe.br/bitstream/123456789/29396/1/TESE%20Telmo%20de%20Menezes%20e%20Silva%20Filho.pdf0ebf83836b4e75e47448aae563e8deddMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/29396/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/29396/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE Telmo de Menezes e Silva Filho.pdf.txtTESE Telmo de Menezes e Silva Filho.pdf.txtExtracted texttext/plain225857https://repositorio.ufpe.br/bitstream/123456789/29396/4/TESE%20Telmo%20de%20Menezes%20e%20Silva%20Filho.pdf.txt4c85dbe06a695444a76ff2fe0db93a64MD54123456789/293962019-10-25 08:11:27.573oai:repositorio.ufpe.br:123456789/29396TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T11:11:27Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Classificação baseada em protótipos de decisão mais próximos e distâncias adaptativas |
title |
Classificação baseada em protótipos de decisão mais próximos e distâncias adaptativas |
spellingShingle |
Classificação baseada em protótipos de decisão mais próximos e distâncias adaptativas SILVA FILHO, Telmo de Menezes e Inteligência computacional Aprendizado de computador Inteligência artificial |
title_short |
Classificação baseada em protótipos de decisão mais próximos e distâncias adaptativas |
title_full |
Classificação baseada em protótipos de decisão mais próximos e distâncias adaptativas |
title_fullStr |
Classificação baseada em protótipos de decisão mais próximos e distâncias adaptativas |
title_full_unstemmed |
Classificação baseada em protótipos de decisão mais próximos e distâncias adaptativas |
title_sort |
Classificação baseada em protótipos de decisão mais próximos e distâncias adaptativas |
author |
SILVA FILHO, Telmo de Menezes e |
author_facet |
SILVA FILHO, Telmo de Menezes e |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/4640945954423515 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9289080285504453 |
dc.contributor.author.fl_str_mv |
SILVA FILHO, Telmo de Menezes e |
dc.contributor.advisor1.fl_str_mv |
SOUZA, Renata Maria Cardoso Rodrigues de |
dc.contributor.advisor-co1.fl_str_mv |
PRUDÊNCIO, Ricardo Bastos Cavalcante |
contributor_str_mv |
SOUZA, Renata Maria Cardoso Rodrigues de PRUDÊNCIO, Ricardo Bastos Cavalcante |
dc.subject.por.fl_str_mv |
Inteligência computacional Aprendizado de computador Inteligência artificial |
topic |
Inteligência computacional Aprendizado de computador Inteligência artificial |
description |
A aprendizagem de máquina é um ramo da inteligência artificial, cujo objetivo é desenvolver algoritmos capazes de aprender a partir de dados a fim de realizar diferentes tarefas, como por exemplo, classificação e estimação de probabilidades de classe supervisionadas e semi-supervisionadas. Essas tarefas podem ser realizadas de forma intuitiva e com predições interpretáveis pelos métodos baseados em protótipos. Quanto a esses métodos, é preciso considerar dois pontos importantes: (i) são suscetíveis a mínimos locais causados pela má inicialização dos protótipos e (ii) são sensíveis à distância escolhida para comparar protótipos e instâncias, pois essa precisa ser capaz de modelar a variabilidade interna dos protótipos e classes para alcançar um bom desempenho. Assim, este trabalho visa a explorar a versatilidade dos métodos baseados em protótipos para apresentar soluções para as tarefas de classificação supervisionada e semi-supervisionada, ao mesmo tempo em que apresenta soluções para os dois pontos mencionados acima, principalmente na forma de novas distâncias adaptativas. Para a primeira tarefa, este trabalho introduz um novo método que apresenta uma solução para o problema dos mínimos locais e usa uma distância generalizada aplicada a dados intervalares, capaz de modelar classes desbalanceadas e sub-regiões de classe de diferentes formas e tamanhos. Esse algoritmo também é capaz de eliminar protótipos inativos e selecionar atributos automaticamente. Para a tarefa de classificação semi-supervisionada, este trabalho propõe um algoritmo de propagação de rótulos através de grafos que, ao contrário dos métodos presentes na literatura, não foca apenas na classificação de instâncias não-rotuladas, mas sim na predição de probabilidades de classe apropriadas. Este trabalho também provê uma análise de desempenho dos dois métodos propostos, comparando-os a métodos existentes, em termos de taxa de erro de classificação (primeiro método) e funções de escore apropriadas (segundo método), usando conjuntos de dados reais e sintéticos. Experimentos mostram que ambos os métodos apresentam desempenhos significativamente superiores ao estado da arte. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-09-22 |
dc.date.accessioned.fl_str_mv |
2019-02-21T22:42:28Z |
dc.date.available.fl_str_mv |
2019-02-21T22:42:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/29396 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000r53t |
url |
https://repositorio.ufpe.br/handle/123456789/29396 |
identifier_str_mv |
ark:/64986/001300000r53t |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/29396/5/TESE%20Telmo%20de%20Menezes%20e%20Silva%20Filho.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/29396/1/TESE%20Telmo%20de%20Menezes%20e%20Silva%20Filho.pdf https://repositorio.ufpe.br/bitstream/123456789/29396/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/29396/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/29396/4/TESE%20Telmo%20de%20Menezes%20e%20Silva%20Filho.pdf.txt |
bitstream.checksum.fl_str_mv |
f065d8556a8be3a57683d67bb8aee13f 0ebf83836b4e75e47448aae563e8dedd e39d27027a6cc9cb039ad269a5db8e34 4b8a02c7f2818eaf00dcf2260dd5eb08 4c85dbe06a695444a76ff2fe0db93a64 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172892549185536 |