Agrupamento e regressão linear de dados simbólicos intervalares baseados em novas representações
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000nfs8 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/17640 |
Resumo: | Um intervalo é um tipo de dado complexo usado na agregação de informações ou na representação de dados imprecisos. Este trabalho apresenta duas novas representações para intervalos com o objetivo de se construir novos métodos de agrupamento e regressão linear para este tipo de dado. O agrupamento por nuvens dinâmicas define partições nos dados e associa protótipos a cada uma destas partições. Os protótipos resumem a informação das partições e são usados na minimização de um critério que depende de uma distância, responsável por quantificar a proximidade entre instâncias e protótipos. Neste sentido, propõe-se a formulação de uma nova distância híbrida entre intervalos baseando-se em distâncias para pontos. Os pontos utilizados são obtidos dos intervalos através de um mapeamento. Também são propostas duas versões com pesos para a distância criada: uma com pesos no hibridismo e outra com pesos adaptativos. Na regressão linear, propõe-se a representação dos intervalos através da equação paramétrica da reta. Esta parametrização permite o ajuste dos pontos nas variáveis regressoras que dão as melhores estimativas para os limites da variável resposta. Antes da realização da regressão, um critério é calculado para a verificação da coerência matemática da predição, na qual o limite superior deve ser maior ou igual ao inferior. Se o critério mostra que a coerência não é garantida, propõe-se a aplicação de uma transformação sobre a variável resposta. Assim, este trabalho também propõe algumas transformações que podem ser aplicadas a dados intervalares, no contexto de regressão. Dados sintéticos e reais são utilizados para comparar os métodos provenientes das representações propostas e aqueles presentes na literatura. |
id |
UFPE_87adbc0b37f57f62ea0af82aa57c9111 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/17640 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SOUZA, Leandro Carlos dehttp://lattes.cnpq.br/7894153744845649SOUZA, Renata Maria Cardoso Rodrigues daAMARAL, Getúlio José Amorim do2016-08-08T12:52:58Z2016-08-08T12:52:58Z2016-03-28https://repositorio.ufpe.br/handle/123456789/17640ark:/64986/001300000nfs8Um intervalo é um tipo de dado complexo usado na agregação de informações ou na representação de dados imprecisos. Este trabalho apresenta duas novas representações para intervalos com o objetivo de se construir novos métodos de agrupamento e regressão linear para este tipo de dado. O agrupamento por nuvens dinâmicas define partições nos dados e associa protótipos a cada uma destas partições. Os protótipos resumem a informação das partições e são usados na minimização de um critério que depende de uma distância, responsável por quantificar a proximidade entre instâncias e protótipos. Neste sentido, propõe-se a formulação de uma nova distância híbrida entre intervalos baseando-se em distâncias para pontos. Os pontos utilizados são obtidos dos intervalos através de um mapeamento. Também são propostas duas versões com pesos para a distância criada: uma com pesos no hibridismo e outra com pesos adaptativos. Na regressão linear, propõe-se a representação dos intervalos através da equação paramétrica da reta. Esta parametrização permite o ajuste dos pontos nas variáveis regressoras que dão as melhores estimativas para os limites da variável resposta. Antes da realização da regressão, um critério é calculado para a verificação da coerência matemática da predição, na qual o limite superior deve ser maior ou igual ao inferior. Se o critério mostra que a coerência não é garantida, propõe-se a aplicação de uma transformação sobre a variável resposta. Assim, este trabalho também propõe algumas transformações que podem ser aplicadas a dados intervalares, no contexto de regressão. Dados sintéticos e reais são utilizados para comparar os métodos provenientes das representações propostas e aqueles presentes na literatura.An interval is a complex data type used in the information aggregation or in the representation of imprecise data. This work presents two new representations of intervals in order to construct a new cluster method and a new linear regression method for this kind of data. Dynamic clustering defines partitions into the data and it defines prototypes associated with each one of these partitions. The prototypes summarize the information about the partitions and they are used in a minimization criterion which depends on a distance, which is responsible for quantifying the proximity between instances and prototypes. In this way, it is proposed a new hybrid distance between intervals based on a family of distances between points. Points are obtained from the interval through a mapping. Also, it is proposed two versions of the hybrid distance, both with weights: one with weights in hybridism and other with adaptive weights. In linear regression, it is proposed to represent the intervals through the parametric equation of the line. This parametrization allows to find the set of points in the regression variables corresponding to the best estimates for the response variable limits. Before the regression construction, a criterion is computed to verify the mathematical consistency of prediction, where the upper limit must be greater than or equal to the lower. If the test shows that consistency is not guaranteed, then the application proposes a transformation of the response variable. Therefore, this work also proposes some transformations that can be applied to interval data in the regression context. Synthetic and real data are used to compare the proposed methods and those one proposed on literature.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAgrupamento por Nuvens DinâmicasDistâncias Híbridas para IntervalosRegressão Linear IntervalarMétodo dos Intervalos ParametrizadosDynamic ClusteringInterval Hybrid DistancesInterval Linear RegressionParametrized Interval MethodAgrupamento e regressão linear de dados simbólicos intervalares baseados em novas representaçõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALteseCinLeandro.pdfteseCinLeandro.pdfapplication/pdf1316077https://repositorio.ufpe.br/bitstream/123456789/17640/1/teseCinLeandro.pdf61e762c7526a38a80ecab8f5c7769a47MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/17640/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/17640/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTteseCinLeandro.pdf.txtteseCinLeandro.pdf.txtExtracted texttext/plain400969https://repositorio.ufpe.br/bitstream/123456789/17640/4/teseCinLeandro.pdf.txte72b6beedd02d59f285ca39c43399a96MD54THUMBNAILteseCinLeandro.pdf.jpgteseCinLeandro.pdf.jpgGenerated Thumbnailimage/jpeg1239https://repositorio.ufpe.br/bitstream/123456789/17640/5/teseCinLeandro.pdf.jpg9926cf89917fe3a6dc96d1901a95f2d2MD55123456789/176402019-10-25 02:09:32.964oai:repositorio.ufpe.br:123456789/17640TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:09:32Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Agrupamento e regressão linear de dados simbólicos intervalares baseados em novas representações |
title |
Agrupamento e regressão linear de dados simbólicos intervalares baseados em novas representações |
spellingShingle |
Agrupamento e regressão linear de dados simbólicos intervalares baseados em novas representações SOUZA, Leandro Carlos de Agrupamento por Nuvens Dinâmicas Distâncias Híbridas para Intervalos Regressão Linear Intervalar Método dos Intervalos Parametrizados Dynamic Clustering Interval Hybrid Distances Interval Linear Regression Parametrized Interval Method |
title_short |
Agrupamento e regressão linear de dados simbólicos intervalares baseados em novas representações |
title_full |
Agrupamento e regressão linear de dados simbólicos intervalares baseados em novas representações |
title_fullStr |
Agrupamento e regressão linear de dados simbólicos intervalares baseados em novas representações |
title_full_unstemmed |
Agrupamento e regressão linear de dados simbólicos intervalares baseados em novas representações |
title_sort |
Agrupamento e regressão linear de dados simbólicos intervalares baseados em novas representações |
author |
SOUZA, Leandro Carlos de |
author_facet |
SOUZA, Leandro Carlos de |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7894153744845649 |
dc.contributor.author.fl_str_mv |
SOUZA, Leandro Carlos de |
dc.contributor.advisor1.fl_str_mv |
SOUZA, Renata Maria Cardoso Rodrigues da |
dc.contributor.advisor-co1.fl_str_mv |
AMARAL, Getúlio José Amorim do |
contributor_str_mv |
SOUZA, Renata Maria Cardoso Rodrigues da AMARAL, Getúlio José Amorim do |
dc.subject.por.fl_str_mv |
Agrupamento por Nuvens Dinâmicas Distâncias Híbridas para Intervalos Regressão Linear Intervalar Método dos Intervalos Parametrizados Dynamic Clustering Interval Hybrid Distances Interval Linear Regression Parametrized Interval Method |
topic |
Agrupamento por Nuvens Dinâmicas Distâncias Híbridas para Intervalos Regressão Linear Intervalar Método dos Intervalos Parametrizados Dynamic Clustering Interval Hybrid Distances Interval Linear Regression Parametrized Interval Method |
description |
Um intervalo é um tipo de dado complexo usado na agregação de informações ou na representação de dados imprecisos. Este trabalho apresenta duas novas representações para intervalos com o objetivo de se construir novos métodos de agrupamento e regressão linear para este tipo de dado. O agrupamento por nuvens dinâmicas define partições nos dados e associa protótipos a cada uma destas partições. Os protótipos resumem a informação das partições e são usados na minimização de um critério que depende de uma distância, responsável por quantificar a proximidade entre instâncias e protótipos. Neste sentido, propõe-se a formulação de uma nova distância híbrida entre intervalos baseando-se em distâncias para pontos. Os pontos utilizados são obtidos dos intervalos através de um mapeamento. Também são propostas duas versões com pesos para a distância criada: uma com pesos no hibridismo e outra com pesos adaptativos. Na regressão linear, propõe-se a representação dos intervalos através da equação paramétrica da reta. Esta parametrização permite o ajuste dos pontos nas variáveis regressoras que dão as melhores estimativas para os limites da variável resposta. Antes da realização da regressão, um critério é calculado para a verificação da coerência matemática da predição, na qual o limite superior deve ser maior ou igual ao inferior. Se o critério mostra que a coerência não é garantida, propõe-se a aplicação de uma transformação sobre a variável resposta. Assim, este trabalho também propõe algumas transformações que podem ser aplicadas a dados intervalares, no contexto de regressão. Dados sintéticos e reais são utilizados para comparar os métodos provenientes das representações propostas e aqueles presentes na literatura. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-08-08T12:52:58Z |
dc.date.available.fl_str_mv |
2016-08-08T12:52:58Z |
dc.date.issued.fl_str_mv |
2016-03-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/17640 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000nfs8 |
url |
https://repositorio.ufpe.br/handle/123456789/17640 |
identifier_str_mv |
ark:/64986/001300000nfs8 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/17640/1/teseCinLeandro.pdf https://repositorio.ufpe.br/bitstream/123456789/17640/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/17640/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/17640/4/teseCinLeandro.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/17640/5/teseCinLeandro.pdf.jpg |
bitstream.checksum.fl_str_mv |
61e762c7526a38a80ecab8f5c7769a47 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 e72b6beedd02d59f285ca39c43399a96 9926cf89917fe3a6dc96d1901a95f2d2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172866527723520 |