Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000krnz |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/51920 |
Resumo: | Termometria Óptica (TO) é, essencialmente, um campo da física que estuda a temperatura e seus parâmetros usando ferramentas do domínio da óptica, como lasers, por exemplo. De forma objetiva, a TO consiste em observar qualquer característica óptica (emissão, tempo de vida, polarização, etc) de uma amostra e sua relação com a temperatura. Na maioria dos trabalhos da literatura, o domínio de estudo da TO são nas regiões espectrais ultravioleta-visível-infravermelho, sem ir muito longe no espectro eletromagnético. Portanto, também chamamos esses estudos de “Termometria de Luminescência” ou “Termometria Luminescente”. Os métodos empregados na literatura para realizar o estudo da termometria óptica (ou luminescente) consiste em observar como a temperatura afeta as características espectroscópicas (largura de linha, deslocamento espectral, tempo de vida, etc.) da amostra. Com isso, é possível estudar a sensibilidade relativa e a resolução térmica (e outros parâmetros) para propor uma configuração em que se possa construir um termômetro óptico. As vantagens desse tipo de termômetro em relação aos termômetros convencionais são, principalmente, a resolução espacial na escala micro- e nanoscópica e a possibilidade de medir a temperatura em regiões mais profundas do que a superfície em tecidos biológicos, materiais orgânicos e inorgânicos. O estudo da TO possui diversos exemplos e aplicações demonstrados na literatura, no entanto, os métodos utilizados (que chamaremos de métodos convencionais) possuem um grau de incerteza considerável em diversos casos. Com isso, neste trabalho usamos uma técnica moderna bem estabelecida computacionalmente para fazer as análises dos dados – Machine Learning (ML). O Aprendizado de Máquina (Machine Learning) é uma técnica computacional de Inteligência Artificial que tem, dentre seus objetivos, a possibilidade de proporcionar à máquina (computador) o aprendizado de padrões ou não-padrões, a partir de um conjunto de dados de treino, para conseguir fazer previsões ou classificações. Nessa pesquisa, realizamos o estudo da termometria óptica usando microesferas de Nd3+:YAG e comparamos os resultados obtidos por métodos convencionais (razão de intensidade e regressão linear múltipla) e pelo aprendizado de máquina. Mostramos que usando o ML é possível reduzir a incerteza na previsão da temperatura na termometria óptica, quando comparado aos métodos convencionais. O algoritmo construído está disponível na seção de apêndices. |
id |
UFPE_8afaf5b9494a786e13583ee52e932a60 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/51920 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SANTOS, Emanuel Pinheirohttp://lattes.cnpq.br/1281978630659274http://lattes.cnpq.br/8841334894205599http://lattes.cnpq.br/3256407849237662GOMES, Anderson Stevens LeonidasMOURA, André de Lima2023-08-16T19:46:54Z2023-08-16T19:46:54Z2023-07-28SANTOS, Emanuel Pinheiro. Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes. 2023. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/51920ark:/64986/001300000krnzTermometria Óptica (TO) é, essencialmente, um campo da física que estuda a temperatura e seus parâmetros usando ferramentas do domínio da óptica, como lasers, por exemplo. De forma objetiva, a TO consiste em observar qualquer característica óptica (emissão, tempo de vida, polarização, etc) de uma amostra e sua relação com a temperatura. Na maioria dos trabalhos da literatura, o domínio de estudo da TO são nas regiões espectrais ultravioleta-visível-infravermelho, sem ir muito longe no espectro eletromagnético. Portanto, também chamamos esses estudos de “Termometria de Luminescência” ou “Termometria Luminescente”. Os métodos empregados na literatura para realizar o estudo da termometria óptica (ou luminescente) consiste em observar como a temperatura afeta as características espectroscópicas (largura de linha, deslocamento espectral, tempo de vida, etc.) da amostra. Com isso, é possível estudar a sensibilidade relativa e a resolução térmica (e outros parâmetros) para propor uma configuração em que se possa construir um termômetro óptico. As vantagens desse tipo de termômetro em relação aos termômetros convencionais são, principalmente, a resolução espacial na escala micro- e nanoscópica e a possibilidade de medir a temperatura em regiões mais profundas do que a superfície em tecidos biológicos, materiais orgânicos e inorgânicos. O estudo da TO possui diversos exemplos e aplicações demonstrados na literatura, no entanto, os métodos utilizados (que chamaremos de métodos convencionais) possuem um grau de incerteza considerável em diversos casos. Com isso, neste trabalho usamos uma técnica moderna bem estabelecida computacionalmente para fazer as análises dos dados – Machine Learning (ML). O Aprendizado de Máquina (Machine Learning) é uma técnica computacional de Inteligência Artificial que tem, dentre seus objetivos, a possibilidade de proporcionar à máquina (computador) o aprendizado de padrões ou não-padrões, a partir de um conjunto de dados de treino, para conseguir fazer previsões ou classificações. Nessa pesquisa, realizamos o estudo da termometria óptica usando microesferas de Nd3+:YAG e comparamos os resultados obtidos por métodos convencionais (razão de intensidade e regressão linear múltipla) e pelo aprendizado de máquina. Mostramos que usando o ML é possível reduzir a incerteza na previsão da temperatura na termometria óptica, quando comparado aos métodos convencionais. O algoritmo construído está disponível na seção de apêndices.CAPESOptical Thermometry (OT) is essentially a field of physics that studies temperature and its parameters using tools from the optics domain, such as lasers, for example. Succinctly, OT consists of observing any optical characteristic (emission, lifetime, polarization, etc.) of a sample and its relationship with temperature. In most works in the literature, the OT field of study are in the ultraviolet-visible-infrared spectral regions, without going too far into the electromagnetic spectrum. Therefore, we also call these studies “Luminescence Thermometry” or “Luminescent Thermometry”. The methods used in the literature to study optical (or luminescent) thermometry consist of observing how temperature affects the spectroscopic characteristics (line width, spectral shift, lifetime, etc.) of the sample. With this, it is possible to study the relative sensitivity and the thermal resolution (and other parameters) to propose a configuration in which an optical thermometer can be built. The advantages of this type of thermometer in relation to conventional thermometers are, mainly, the spatial resolution micro- nano- scale and the possibility of measuring the temperature in regions deeper than the surface in biological tissues, organic and inorganic materials. The study of OT already contains several examples and applications shown in the literature, however, the methods used (which we will call conventional methods) have a considerable degree of uncertainty in several cases. Therefore, in this work we use a well-established modern computational tool to analyze the data – Machine Learning (ML). Machine Learning is a computational technique of Artificial Intelligence that has among its goals the possibility to enable the machine (computer) with the learning of patterns or non-patterns, from a set of training data, to be able to make predictions or ratings. In this research, we performed the study of optical thermometry using Nd3+:YAG microspheres and compared the results obtained by conventional methods and by machine learning. We show that using ML it is possible to reduce uncertainty in temperature prediction in optical thermometry, when compared to conventional methods. The constructed algorithm is available in the appendices section.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessÓpticaTermometriaAprendizado de máquinaLaserAprendizado de máquina para aumentar precisão em termômetros fotoluminescentesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/51920/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/51920/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53ORIGINALDISSERTAÇÃO Emanuel Pinheiro Santos.pdfDISSERTAÇÃO Emanuel Pinheiro Santos.pdfapplication/pdf3708778https://repositorio.ufpe.br/bitstream/123456789/51920/1/DISSERTA%c3%87%c3%83O%20Emanuel%20Pinheiro%20Santos.pdf0bf8eed26eb2332b424bc98c67a69538MD51TEXTDISSERTAÇÃO Emanuel Pinheiro Santos.pdf.txtDISSERTAÇÃO Emanuel Pinheiro Santos.pdf.txtExtracted texttext/plain131681https://repositorio.ufpe.br/bitstream/123456789/51920/4/DISSERTA%c3%87%c3%83O%20Emanuel%20Pinheiro%20Santos.pdf.txtb7d0337ab7792c06c8ba7fc99e055ad5MD54THUMBNAILDISSERTAÇÃO Emanuel Pinheiro Santos.pdf.jpgDISSERTAÇÃO Emanuel Pinheiro Santos.pdf.jpgGenerated Thumbnailimage/jpeg1226https://repositorio.ufpe.br/bitstream/123456789/51920/5/DISSERTA%c3%87%c3%83O%20Emanuel%20Pinheiro%20Santos.pdf.jpg7bcc404884af7483e70374f5b53c8a30MD55123456789/519202023-08-17 02:17:43.519oai:repositorio.ufpe.br:123456789/51920VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-08-17T05:17:43Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes |
title |
Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes |
spellingShingle |
Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes SANTOS, Emanuel Pinheiro Óptica Termometria Aprendizado de máquina Laser |
title_short |
Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes |
title_full |
Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes |
title_fullStr |
Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes |
title_full_unstemmed |
Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes |
title_sort |
Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes |
author |
SANTOS, Emanuel Pinheiro |
author_facet |
SANTOS, Emanuel Pinheiro |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/1281978630659274 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/8841334894205599 |
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3256407849237662 |
dc.contributor.author.fl_str_mv |
SANTOS, Emanuel Pinheiro |
dc.contributor.advisor1.fl_str_mv |
GOMES, Anderson Stevens Leonidas |
dc.contributor.advisor-co1.fl_str_mv |
MOURA, André de Lima |
contributor_str_mv |
GOMES, Anderson Stevens Leonidas MOURA, André de Lima |
dc.subject.por.fl_str_mv |
Óptica Termometria Aprendizado de máquina Laser |
topic |
Óptica Termometria Aprendizado de máquina Laser |
description |
Termometria Óptica (TO) é, essencialmente, um campo da física que estuda a temperatura e seus parâmetros usando ferramentas do domínio da óptica, como lasers, por exemplo. De forma objetiva, a TO consiste em observar qualquer característica óptica (emissão, tempo de vida, polarização, etc) de uma amostra e sua relação com a temperatura. Na maioria dos trabalhos da literatura, o domínio de estudo da TO são nas regiões espectrais ultravioleta-visível-infravermelho, sem ir muito longe no espectro eletromagnético. Portanto, também chamamos esses estudos de “Termometria de Luminescência” ou “Termometria Luminescente”. Os métodos empregados na literatura para realizar o estudo da termometria óptica (ou luminescente) consiste em observar como a temperatura afeta as características espectroscópicas (largura de linha, deslocamento espectral, tempo de vida, etc.) da amostra. Com isso, é possível estudar a sensibilidade relativa e a resolução térmica (e outros parâmetros) para propor uma configuração em que se possa construir um termômetro óptico. As vantagens desse tipo de termômetro em relação aos termômetros convencionais são, principalmente, a resolução espacial na escala micro- e nanoscópica e a possibilidade de medir a temperatura em regiões mais profundas do que a superfície em tecidos biológicos, materiais orgânicos e inorgânicos. O estudo da TO possui diversos exemplos e aplicações demonstrados na literatura, no entanto, os métodos utilizados (que chamaremos de métodos convencionais) possuem um grau de incerteza considerável em diversos casos. Com isso, neste trabalho usamos uma técnica moderna bem estabelecida computacionalmente para fazer as análises dos dados – Machine Learning (ML). O Aprendizado de Máquina (Machine Learning) é uma técnica computacional de Inteligência Artificial que tem, dentre seus objetivos, a possibilidade de proporcionar à máquina (computador) o aprendizado de padrões ou não-padrões, a partir de um conjunto de dados de treino, para conseguir fazer previsões ou classificações. Nessa pesquisa, realizamos o estudo da termometria óptica usando microesferas de Nd3+:YAG e comparamos os resultados obtidos por métodos convencionais (razão de intensidade e regressão linear múltipla) e pelo aprendizado de máquina. Mostramos que usando o ML é possível reduzir a incerteza na previsão da temperatura na termometria óptica, quando comparado aos métodos convencionais. O algoritmo construído está disponível na seção de apêndices. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-08-16T19:46:54Z |
dc.date.available.fl_str_mv |
2023-08-16T19:46:54Z |
dc.date.issued.fl_str_mv |
2023-07-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS, Emanuel Pinheiro. Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes. 2023. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2023. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/51920 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000krnz |
identifier_str_mv |
SANTOS, Emanuel Pinheiro. Aprendizado de máquina para aumentar precisão em termômetros fotoluminescentes. 2023. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2023. ark:/64986/001300000krnz |
url |
https://repositorio.ufpe.br/handle/123456789/51920 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Fisica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/51920/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/51920/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/51920/1/DISSERTA%c3%87%c3%83O%20Emanuel%20Pinheiro%20Santos.pdf https://repositorio.ufpe.br/bitstream/123456789/51920/4/DISSERTA%c3%87%c3%83O%20Emanuel%20Pinheiro%20Santos.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/51920/5/DISSERTA%c3%87%c3%83O%20Emanuel%20Pinheiro%20Santos.pdf.jpg |
bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 0bf8eed26eb2332b424bc98c67a69538 b7d0337ab7792c06c8ba7fc99e055ad5 7bcc404884af7483e70374f5b53c8a30 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172850271649792 |