O algoritmo polinomial de Shor para fatoração em um computador quântico

Detalhes bibliográficos
Autor(a) principal: Sansuke Maranhão Watanabe, Mário
Data de Publicação: 2003
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000001v56
Texto Completo: https://repositorio.ufpe.br/handle/123456789/7361
Resumo: Sistemas de criptografia largamente difundidos como o RSA fundamentam a sua eficiência na suposição de que, em termos práticos, é impossível fatorar números inteiros suficientemente grandes em uma escala de tempo aceitável. Mais precisamente, não existem, até o momento, algoritmos de fatoração em tempo polinomial que possam ser implementados nos atuais computadores. Dentre os algoritmos conhecidos, o mais eficiente requer um tempo computacional de ordem exponencial na quantidade de dígitos binários do número a ser fatorado. Em 1994, baseado nos trabalhos anteriores de Benioff, Bennett, Deutsch, Feynman e Simon, dentre outros, Peter Shor apresentou um algoritmo de fatoração que requer assintoticamente uma quantidade em ordem polinomial de passos em um computador quântico para fatorar um número inteiro de tamanho arbitrário. Esse algoritmo ao invés de abordar o problema de decompor tal número em dois fatores não triviais pelo método direto de divisões sucessivas, utiliza o problema equivalente de encontrar a ordem de um certo inteiro modulo o número fatorado, onde esse inteiro é escolhido aleatoriamente relativamente primo com o número fatorado. Shor faz uso de um algoritmo quântico para calcular essa ordem. A computação quântica revela um paradigma computacional bastante adverso da computação clássica. Enquanto esta última é realizada através de operações binárias determinísticas com base na lógica booleana clássica, a computação quântica fundamenta as suas operações nos postulados que descrevem o comportamento quântico da matéria. Portanto, é probabilística no seu modus operandi. Essa diferença entre os formalismos lógicos da computação clássica e da computação quântica é um reflexo direto da natureza dos sistemas físicos que são utilizados para implementar concretamente cada uma dessas computações. Esta dissertação apresenta o algoritmo de Shor para fatoração em um computador quântico. Na seqüência, introduzimos no capítulo 1 alguns conceitos básicos da computação clássica com o objetivo de criar um ambiente de idéias favorável à apresentação da computação quântica como uma extensão, tão natural quanto possível, do modelo clássico computacional. Assim, no capítulo 2, apresentamos as bases do formalismo matemático que modela a computação quântica, atendo-nos apenas aos aspectos conceituais que são, direta ou indiretamente, aplicados na descrição do algoritmo de Shor. Os capítulos 3 e 4 são dedicados à apresentação do algoritmo de fatoração de Shor, feita em duas partes. A primeira diz respeito a parte não quântica e aborda os aspectos algébricos do algoritmo. Também é demonstrado o teorema que assegura a viabilidade probabilística da solução desse problema. No capítulo 4, apresentamos a parte quântica do algoritmo de Shor. O ponto alto da dissertação é alcançado mostrando-se como encontrar a ordem de um inteiro módulo o número a ser fatorado relativamente primo com este, conciliando o algoritmo quântico com uma interpretação clássica de seus dados de saída, mediante o uso da expansão de um número racional em frações contínuas
id UFPE_8b9fe9bff475204b1e426467db775b97
oai_identifier_str oai:repositorio.ufpe.br:123456789/7361
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Sansuke Maranhão Watanabe, MárioJosé Machado Soares Lemos, Manoel 2014-06-12T18:31:41Z2014-06-12T18:31:41Z2003Sansuke Maranhão Watanabe, Mário; José Machado Soares Lemos, Manoel. O algoritmo polinomial de Shor para fatoração em um computador quântico. 2003. Dissertação (Mestrado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2003.https://repositorio.ufpe.br/handle/123456789/7361ark:/64986/0013000001v56Sistemas de criptografia largamente difundidos como o RSA fundamentam a sua eficiência na suposição de que, em termos práticos, é impossível fatorar números inteiros suficientemente grandes em uma escala de tempo aceitável. Mais precisamente, não existem, até o momento, algoritmos de fatoração em tempo polinomial que possam ser implementados nos atuais computadores. Dentre os algoritmos conhecidos, o mais eficiente requer um tempo computacional de ordem exponencial na quantidade de dígitos binários do número a ser fatorado. Em 1994, baseado nos trabalhos anteriores de Benioff, Bennett, Deutsch, Feynman e Simon, dentre outros, Peter Shor apresentou um algoritmo de fatoração que requer assintoticamente uma quantidade em ordem polinomial de passos em um computador quântico para fatorar um número inteiro de tamanho arbitrário. Esse algoritmo ao invés de abordar o problema de decompor tal número em dois fatores não triviais pelo método direto de divisões sucessivas, utiliza o problema equivalente de encontrar a ordem de um certo inteiro modulo o número fatorado, onde esse inteiro é escolhido aleatoriamente relativamente primo com o número fatorado. Shor faz uso de um algoritmo quântico para calcular essa ordem. A computação quântica revela um paradigma computacional bastante adverso da computação clássica. Enquanto esta última é realizada através de operações binárias determinísticas com base na lógica booleana clássica, a computação quântica fundamenta as suas operações nos postulados que descrevem o comportamento quântico da matéria. Portanto, é probabilística no seu modus operandi. Essa diferença entre os formalismos lógicos da computação clássica e da computação quântica é um reflexo direto da natureza dos sistemas físicos que são utilizados para implementar concretamente cada uma dessas computações. Esta dissertação apresenta o algoritmo de Shor para fatoração em um computador quântico. Na seqüência, introduzimos no capítulo 1 alguns conceitos básicos da computação clássica com o objetivo de criar um ambiente de idéias favorável à apresentação da computação quântica como uma extensão, tão natural quanto possível, do modelo clássico computacional. Assim, no capítulo 2, apresentamos as bases do formalismo matemático que modela a computação quântica, atendo-nos apenas aos aspectos conceituais que são, direta ou indiretamente, aplicados na descrição do algoritmo de Shor. Os capítulos 3 e 4 são dedicados à apresentação do algoritmo de fatoração de Shor, feita em duas partes. A primeira diz respeito a parte não quântica e aborda os aspectos algébricos do algoritmo. Também é demonstrado o teorema que assegura a viabilidade probabilística da solução desse problema. No capítulo 4, apresentamos a parte quântica do algoritmo de Shor. O ponto alto da dissertação é alcançado mostrando-se como encontrar a ordem de um inteiro módulo o número a ser fatorado relativamente primo com este, conciliando o algoritmo quântico com uma interpretação clássica de seus dados de saída, mediante o uso da expansão de um número racional em frações contínuasporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessComputador quânticoAlgoritmo polinomial - ShorFatoraçãoO algoritmo polinomial de Shor para fatoração em um computador quânticoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo8516_1.pdf.jpgarquivo8516_1.pdf.jpgGenerated Thumbnailimage/jpeg1280https://repositorio.ufpe.br/bitstream/123456789/7361/4/arquivo8516_1.pdf.jpg80c6a2cebac0df561130097d90925697MD54ORIGINALarquivo8516_1.pdfapplication/pdf556858https://repositorio.ufpe.br/bitstream/123456789/7361/1/arquivo8516_1.pdf61691f022e165231e3147bd9b1b11a63MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/7361/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo8516_1.pdf.txtarquivo8516_1.pdf.txtExtracted texttext/plain124112https://repositorio.ufpe.br/bitstream/123456789/7361/3/arquivo8516_1.pdf.txt4ac957ccdd16ccf7122a1254b27c1c6dMD53123456789/73612019-10-25 12:05:42.411oai:repositorio.ufpe.br:123456789/7361Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:05:42Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv O algoritmo polinomial de Shor para fatoração em um computador quântico
title O algoritmo polinomial de Shor para fatoração em um computador quântico
spellingShingle O algoritmo polinomial de Shor para fatoração em um computador quântico
Sansuke Maranhão Watanabe, Mário
Computador quântico
Algoritmo polinomial - Shor
Fatoração
title_short O algoritmo polinomial de Shor para fatoração em um computador quântico
title_full O algoritmo polinomial de Shor para fatoração em um computador quântico
title_fullStr O algoritmo polinomial de Shor para fatoração em um computador quântico
title_full_unstemmed O algoritmo polinomial de Shor para fatoração em um computador quântico
title_sort O algoritmo polinomial de Shor para fatoração em um computador quântico
author Sansuke Maranhão Watanabe, Mário
author_facet Sansuke Maranhão Watanabe, Mário
author_role author
dc.contributor.author.fl_str_mv Sansuke Maranhão Watanabe, Mário
dc.contributor.advisor1.fl_str_mv José Machado Soares Lemos, Manoel
contributor_str_mv José Machado Soares Lemos, Manoel
dc.subject.por.fl_str_mv Computador quântico
Algoritmo polinomial - Shor
Fatoração
topic Computador quântico
Algoritmo polinomial - Shor
Fatoração
description Sistemas de criptografia largamente difundidos como o RSA fundamentam a sua eficiência na suposição de que, em termos práticos, é impossível fatorar números inteiros suficientemente grandes em uma escala de tempo aceitável. Mais precisamente, não existem, até o momento, algoritmos de fatoração em tempo polinomial que possam ser implementados nos atuais computadores. Dentre os algoritmos conhecidos, o mais eficiente requer um tempo computacional de ordem exponencial na quantidade de dígitos binários do número a ser fatorado. Em 1994, baseado nos trabalhos anteriores de Benioff, Bennett, Deutsch, Feynman e Simon, dentre outros, Peter Shor apresentou um algoritmo de fatoração que requer assintoticamente uma quantidade em ordem polinomial de passos em um computador quântico para fatorar um número inteiro de tamanho arbitrário. Esse algoritmo ao invés de abordar o problema de decompor tal número em dois fatores não triviais pelo método direto de divisões sucessivas, utiliza o problema equivalente de encontrar a ordem de um certo inteiro modulo o número fatorado, onde esse inteiro é escolhido aleatoriamente relativamente primo com o número fatorado. Shor faz uso de um algoritmo quântico para calcular essa ordem. A computação quântica revela um paradigma computacional bastante adverso da computação clássica. Enquanto esta última é realizada através de operações binárias determinísticas com base na lógica booleana clássica, a computação quântica fundamenta as suas operações nos postulados que descrevem o comportamento quântico da matéria. Portanto, é probabilística no seu modus operandi. Essa diferença entre os formalismos lógicos da computação clássica e da computação quântica é um reflexo direto da natureza dos sistemas físicos que são utilizados para implementar concretamente cada uma dessas computações. Esta dissertação apresenta o algoritmo de Shor para fatoração em um computador quântico. Na seqüência, introduzimos no capítulo 1 alguns conceitos básicos da computação clássica com o objetivo de criar um ambiente de idéias favorável à apresentação da computação quântica como uma extensão, tão natural quanto possível, do modelo clássico computacional. Assim, no capítulo 2, apresentamos as bases do formalismo matemático que modela a computação quântica, atendo-nos apenas aos aspectos conceituais que são, direta ou indiretamente, aplicados na descrição do algoritmo de Shor. Os capítulos 3 e 4 são dedicados à apresentação do algoritmo de fatoração de Shor, feita em duas partes. A primeira diz respeito a parte não quântica e aborda os aspectos algébricos do algoritmo. Também é demonstrado o teorema que assegura a viabilidade probabilística da solução desse problema. No capítulo 4, apresentamos a parte quântica do algoritmo de Shor. O ponto alto da dissertação é alcançado mostrando-se como encontrar a ordem de um inteiro módulo o número a ser fatorado relativamente primo com este, conciliando o algoritmo quântico com uma interpretação clássica de seus dados de saída, mediante o uso da expansão de um número racional em frações contínuas
publishDate 2003
dc.date.issued.fl_str_mv 2003
dc.date.accessioned.fl_str_mv 2014-06-12T18:31:41Z
dc.date.available.fl_str_mv 2014-06-12T18:31:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Sansuke Maranhão Watanabe, Mário; José Machado Soares Lemos, Manoel. O algoritmo polinomial de Shor para fatoração em um computador quântico. 2003. Dissertação (Mestrado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2003.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/7361
dc.identifier.dark.fl_str_mv ark:/64986/0013000001v56
identifier_str_mv Sansuke Maranhão Watanabe, Mário; José Machado Soares Lemos, Manoel. O algoritmo polinomial de Shor para fatoração em um computador quântico. 2003. Dissertação (Mestrado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2003.
ark:/64986/0013000001v56
url https://repositorio.ufpe.br/handle/123456789/7361
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/7361/4/arquivo8516_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/7361/1/arquivo8516_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/7361/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/7361/3/arquivo8516_1.pdf.txt
bitstream.checksum.fl_str_mv 80c6a2cebac0df561130097d90925697
61691f022e165231e3147bd9b1b11a63
8a4605be74aa9ea9d79846c1fba20a33
4ac957ccdd16ccf7122a1254b27c1c6d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172694098837504