Optical properties of metallic nanoparticles and perspectives for biomedical applications

Detalhes bibliográficos
Autor(a) principal: FAROOQ, Sajid
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
Texto Completo: https://repositorio.ufpe.br/handle/123456789/32614
Resumo: This thesis explains some of the fundamental concepts regarding localized surface plasmon resonance (LSPR) and how to explore it on biosensing and photodynamic therapy. Molecular LSPR sensing and metal-enhanced oxygen singlet generation for photodynamic therapy were demonstrated exploring spherical and non-spherical silver/gold nanoparticles with various size and structures. Mathematical simulations and experimental analyses were used on the discussion of the metallic nanoparticle (NP) size, material and shape contribution to LSPR-based effects. The light-NP interactions were evaluated by the use of Finite Element Method with COMSOL Multiphysics. Computational simulations, focused on the assessment of the LSPR spectrum and spatial distribution of electromagnetic field enhancement near a metallic nanoparticle, were used to ascribe the behavior of crucial parameters, as figure of merit, bulk and molecular sensitivity, which rules the LSPR sensor performance. Here, spherical nanostructures were evaluated as starting points for LSPR biosensor. The theoretical analyses indicated a nonlinear behavior of the bulk and molecular sensitivity of gold and silver nanosphere-based sensing platform as function of the NP size. Significant LSPR peak shift due to the adsorption of molecular layer on the NP surface were observed for nanoparticles with ~ 5 and ~ 40 nm radii. Besides, the theoretical approach used in this work provides insights on the LSPR behavior due to adsorption layer of molecules on a NP surface, establishing a new paradigm on engineering LSPR biosensor. Moreover, molecular sensing was demonstrated by the identification Candida albicans antigen. The feasibility of using Ag nanotriangles on LSPR biosensing was also evaluated. Refractive index based sensitivity (406 nm/RIU) and figure of merit (2.6) values were calculated for nanotriangles colloids, with altitudes ~ 57 nm, and attributed to LSPR near field enhancement at the tips of the nanostructure. The interaction of Ag nanotriangles with Methylene blue photosensitizer was also appraised, and 2.2-fold metal enhanced singlet oxygen generation was determined. The association of Methylene blue with Au nanoshells (80 nm silica core/20 nm gold shell) was also quantified, showing 300% increase in singlet oxygen production upon the irradiation of laser light (632 nm). These results introduce new perspectives on the use of metallic nanoparticles on photodynamic process.
id UFPE_8c811c839c1a861f31b6a78316f45ba1
oai_identifier_str oai:repositorio.ufpe.br:123456789/32614
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling FAROOQ, Sajidhttp://lattes.cnpq.br/3205532373082726http://lattes.cnpq.br/6149477863429826ARAUJO, Renato Evangelista de2019-09-11T19:02:05Z2019-09-11T19:02:05Z2018-03-12https://repositorio.ufpe.br/handle/123456789/32614This thesis explains some of the fundamental concepts regarding localized surface plasmon resonance (LSPR) and how to explore it on biosensing and photodynamic therapy. Molecular LSPR sensing and metal-enhanced oxygen singlet generation for photodynamic therapy were demonstrated exploring spherical and non-spherical silver/gold nanoparticles with various size and structures. Mathematical simulations and experimental analyses were used on the discussion of the metallic nanoparticle (NP) size, material and shape contribution to LSPR-based effects. The light-NP interactions were evaluated by the use of Finite Element Method with COMSOL Multiphysics. Computational simulations, focused on the assessment of the LSPR spectrum and spatial distribution of electromagnetic field enhancement near a metallic nanoparticle, were used to ascribe the behavior of crucial parameters, as figure of merit, bulk and molecular sensitivity, which rules the LSPR sensor performance. Here, spherical nanostructures were evaluated as starting points for LSPR biosensor. The theoretical analyses indicated a nonlinear behavior of the bulk and molecular sensitivity of gold and silver nanosphere-based sensing platform as function of the NP size. Significant LSPR peak shift due to the adsorption of molecular layer on the NP surface were observed for nanoparticles with ~ 5 and ~ 40 nm radii. Besides, the theoretical approach used in this work provides insights on the LSPR behavior due to adsorption layer of molecules on a NP surface, establishing a new paradigm on engineering LSPR biosensor. Moreover, molecular sensing was demonstrated by the identification Candida albicans antigen. The feasibility of using Ag nanotriangles on LSPR biosensing was also evaluated. Refractive index based sensitivity (406 nm/RIU) and figure of merit (2.6) values were calculated for nanotriangles colloids, with altitudes ~ 57 nm, and attributed to LSPR near field enhancement at the tips of the nanostructure. The interaction of Ag nanotriangles with Methylene blue photosensitizer was also appraised, and 2.2-fold metal enhanced singlet oxygen generation was determined. The association of Methylene blue with Au nanoshells (80 nm silica core/20 nm gold shell) was also quantified, showing 300% increase in singlet oxygen production upon the irradiation of laser light (632 nm). These results introduce new perspectives on the use of metallic nanoparticles on photodynamic process.CAPESEsta tese explica alguns dos conceitos fundamentais sobre a ressonância plasmônica de superfície localizada (LSPR) e como explorá-la em terapia fotodinâmica e biosensores. Detecção Molecular LSPR e geração de oxigênio singleto realçado por metal para terapia fotodinâmica foram demonstrados pelo uso de nanopartículas de prata / ouro esféricas e não esféricas com vários tamanhos e estruturas. Simulações matemáticas e análises experimentais foram usadas na discussão do tamanho das nanopartículas metálicas (NP), contribuição do material e da forma para os efeitos baseados em LSPR. As interações luz-NP foram avaliadas pelo uso do Método dos Elementos Finitos com o COMSOL Multiphysics. Simulações computacionais, focadas na avaliação do espectro LSPR e distribuição espacial do aumento do campo eletromagnético próximo a uma nanopartícula metálica, foram utilizadas para atribuir o comportamento de parâmetros cruciais, como figura de mérito, bulk e sensibilidade molecular, que regem o desempenho do sensor LSPR. Aqui, as nanoestruturas esféricas foram avaliadas como pontos de partida para o biossensor LSPR. As análises teóricas indicaram um comportamento não-linear da sensibilidade bulk e molecular da plataforma de detecção baseada em nanoesfera de ouro e prata em função do tamanho da NP. Mudanças significativas no pico do LSPR devido à adsorção da camada molecular na superfície da NP foram observadas para nanopartículas com raios de ~ 5 e ~ 40 nm. Além disso, a abordagem teórica utilizada neste trabalho fornece insights sobre o comportamento do LSPR devido à camada de adsorção de moléculas em uma superfície de NP, estabelecendo um novo paradigma na engenharia de biosensores LSPR. Além disso, a detecção molecular foi demonstrada pela identificação do antígeno Candida albicans. A viabilidade do uso de nanotriangulos de Ag em biossensores LSPR também foi avaliada. Os valores de sensibilidade baseada no índice de refração (406 nm / RIU) e mérito (2.6) foram calculados para colóides de nanotriangulos, com tamanho ~ 57 nm, e atribuídos ao aumento de campo próximo do LSPR nas pontas da nanoestrutura. A interação de nanotriangulos de Ag com o fotossensibilizador Azul de metileno também foi avaliada, e a geração de oxigênio singleto 2,2 vezes maior foi determinada. A associação do Azul de metileno com nanocascas de Au (núcleo de sílica de 80 nm / 20 nm de casca de ouro) também foi quantificada, mostrando um aumento de 300% na produção de oxigênio singleto sob irradiação de luz laser (632 nm).engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia EletricaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia ElétricaNanopartículas metálicasRessonância plasmônica de superfície localizadaMétodo dos elementos finitosSensoresTerapia fotodinâmicaOptical properties of metallic nanoparticles and perspectives for biomedical applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Sajid Farooq.pdf.jpgTESE Sajid Farooq.pdf.jpgGenerated Thumbnailimage/jpeg1308https://repositorio.ufpe.br/bitstream/123456789/32614/5/TESE%20Sajid%20Farooq.pdf.jpgca6d1874868ffcde8eb2247deb558adeMD55ORIGINALTESE Sajid Farooq.pdfTESE Sajid Farooq.pdfapplication/pdf7199507https://repositorio.ufpe.br/bitstream/123456789/32614/1/TESE%20Sajid%20Farooq.pdfff96b7e76a48c395c5df40ac66509aa2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/32614/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/32614/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTTESE Sajid Farooq.pdf.txtTESE Sajid Farooq.pdf.txtExtracted texttext/plain188762https://repositorio.ufpe.br/bitstream/123456789/32614/4/TESE%20Sajid%20Farooq.pdf.txt0adc6f07f6131669b92f77ae4beef98aMD54123456789/326142019-10-26 04:06:31.774oai:repositorio.ufpe.br:123456789/32614TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T07:06:31Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Optical properties of metallic nanoparticles and perspectives for biomedical applications
title Optical properties of metallic nanoparticles and perspectives for biomedical applications
spellingShingle Optical properties of metallic nanoparticles and perspectives for biomedical applications
FAROOQ, Sajid
Engenharia Elétrica
Nanopartículas metálicas
Ressonância plasmônica de superfície localizada
Método dos elementos finitos
Sensores
Terapia fotodinâmica
title_short Optical properties of metallic nanoparticles and perspectives for biomedical applications
title_full Optical properties of metallic nanoparticles and perspectives for biomedical applications
title_fullStr Optical properties of metallic nanoparticles and perspectives for biomedical applications
title_full_unstemmed Optical properties of metallic nanoparticles and perspectives for biomedical applications
title_sort Optical properties of metallic nanoparticles and perspectives for biomedical applications
author FAROOQ, Sajid
author_facet FAROOQ, Sajid
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3205532373082726
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6149477863429826
dc.contributor.author.fl_str_mv FAROOQ, Sajid
dc.contributor.advisor1.fl_str_mv ARAUJO, Renato Evangelista de
contributor_str_mv ARAUJO, Renato Evangelista de
dc.subject.por.fl_str_mv Engenharia Elétrica
Nanopartículas metálicas
Ressonância plasmônica de superfície localizada
Método dos elementos finitos
Sensores
Terapia fotodinâmica
topic Engenharia Elétrica
Nanopartículas metálicas
Ressonância plasmônica de superfície localizada
Método dos elementos finitos
Sensores
Terapia fotodinâmica
description This thesis explains some of the fundamental concepts regarding localized surface plasmon resonance (LSPR) and how to explore it on biosensing and photodynamic therapy. Molecular LSPR sensing and metal-enhanced oxygen singlet generation for photodynamic therapy were demonstrated exploring spherical and non-spherical silver/gold nanoparticles with various size and structures. Mathematical simulations and experimental analyses were used on the discussion of the metallic nanoparticle (NP) size, material and shape contribution to LSPR-based effects. The light-NP interactions were evaluated by the use of Finite Element Method with COMSOL Multiphysics. Computational simulations, focused on the assessment of the LSPR spectrum and spatial distribution of electromagnetic field enhancement near a metallic nanoparticle, were used to ascribe the behavior of crucial parameters, as figure of merit, bulk and molecular sensitivity, which rules the LSPR sensor performance. Here, spherical nanostructures were evaluated as starting points for LSPR biosensor. The theoretical analyses indicated a nonlinear behavior of the bulk and molecular sensitivity of gold and silver nanosphere-based sensing platform as function of the NP size. Significant LSPR peak shift due to the adsorption of molecular layer on the NP surface were observed for nanoparticles with ~ 5 and ~ 40 nm radii. Besides, the theoretical approach used in this work provides insights on the LSPR behavior due to adsorption layer of molecules on a NP surface, establishing a new paradigm on engineering LSPR biosensor. Moreover, molecular sensing was demonstrated by the identification Candida albicans antigen. The feasibility of using Ag nanotriangles on LSPR biosensing was also evaluated. Refractive index based sensitivity (406 nm/RIU) and figure of merit (2.6) values were calculated for nanotriangles colloids, with altitudes ~ 57 nm, and attributed to LSPR near field enhancement at the tips of the nanostructure. The interaction of Ag nanotriangles with Methylene blue photosensitizer was also appraised, and 2.2-fold metal enhanced singlet oxygen generation was determined. The association of Methylene blue with Au nanoshells (80 nm silica core/20 nm gold shell) was also quantified, showing 300% increase in singlet oxygen production upon the irradiation of laser light (632 nm). These results introduce new perspectives on the use of metallic nanoparticles on photodynamic process.
publishDate 2018
dc.date.issued.fl_str_mv 2018-03-12
dc.date.accessioned.fl_str_mv 2019-09-11T19:02:05Z
dc.date.available.fl_str_mv 2019-09-11T19:02:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/32614
url https://repositorio.ufpe.br/handle/123456789/32614
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Engenharia Eletrica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/32614/5/TESE%20Sajid%20Farooq.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/32614/1/TESE%20Sajid%20Farooq.pdf
https://repositorio.ufpe.br/bitstream/123456789/32614/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/32614/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/32614/4/TESE%20Sajid%20Farooq.pdf.txt
bitstream.checksum.fl_str_mv ca6d1874868ffcde8eb2247deb558ade
ff96b7e76a48c395c5df40ac66509aa2
e39d27027a6cc9cb039ad269a5db8e34
bd573a5ca8288eb7272482765f819534
0adc6f07f6131669b92f77ae4beef98a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1802310849264615424