Hierarchical models for financial markets and turbulence
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000002wq8 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/31035 |
Resumo: | In this thesis we present a study about the modeling of multiscale fluctuation phenomena and its applications to different problems in econophysics and turbulence. The thesis was organized in three parts according to the different problems considered. In the first part, we present an empirical study of the Brazilian option market in light of three option pricing models, namely the Black-Scholes model, the exponential model, and a model based on a power law distribution, the so-called q-Gaussian distribution or Tsallis distribution. It is found that the q-Gaussian performs better than BlackScholes in about one-third of the option chains analyzed. But among these cases, the exponential model performs better than the q-Gaussian in 75% of the time. The superiority of the exponential model over the q-Gaussian model is particularly impressive for options close to the expiration date. In the second part, we study a general class of hierarchical models for option pricing with stochastic volatility. We adopt the idea of an information cascade from long to short time scales, aiming to implement a hierarchical stochastic volatility model whose dynamics is described by a system of coupled stochastic differential equations. Assuming that the time scales of the different processes in the hierarchy are well separated, the stationary probability distribution for the volatility is obtained analiticaly in terms of a Meijer G-function. The option price is then computed as the average of the Black-Scholes formula over the volatility distribution, resulting in an explicit formula for the price in terms of a bivariate Meijer G-function. We also analyze the behavior of the theoretical price with the parameters of the model and we briefly compare it to empirical data from the Brazilian options market. In the third part, we study a stochastic model for the distribution of velocity increments in turbulent flows. As a basic hypothesis, we assume that the velocity increments distribution conditioned on a given energy transfer rate is a normal distribution whose variance is proportional to the energy transfer rate and whose mean depends linearly on the variance. The dynamics of the energy flux among the different scales of the hierarchy is described by a hierarchical stochastic process similar to that used in the second part of this thesis for the volatility. Therefore, the stationary distribution of the energy transfer rate is also expressed in terms of a Meijer G-function. The marginal probability distribution for the velocity increments is obtained as a statistical composition of the conditional distribution (Gaussian) with the distribution of the energy transfer rate (a G-function), which results in an asymmetric distribution written in terms of a bivariate Meijer G-function. Our model describes very well the asymmetry observed in empirical velocity increments distributions both from experimental data and numerical simulations of the Navier-Stokes equation. |
id |
UFPE_8cf801f9f4c648f17a73c6b02399c88d |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/31035 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SOSA CORREA, William Oswaldohttp://lattes.cnpq.br/1536313061903287http://lattes.cnpq.br/1091830046970956VASCONCELOS, Giovani Lopes2019-06-11T23:29:42Z2019-06-11T23:29:42Z2018-04-05https://repositorio.ufpe.br/handle/123456789/31035ark:/64986/0013000002wq8In this thesis we present a study about the modeling of multiscale fluctuation phenomena and its applications to different problems in econophysics and turbulence. The thesis was organized in three parts according to the different problems considered. In the first part, we present an empirical study of the Brazilian option market in light of three option pricing models, namely the Black-Scholes model, the exponential model, and a model based on a power law distribution, the so-called q-Gaussian distribution or Tsallis distribution. It is found that the q-Gaussian performs better than BlackScholes in about one-third of the option chains analyzed. But among these cases, the exponential model performs better than the q-Gaussian in 75% of the time. The superiority of the exponential model over the q-Gaussian model is particularly impressive for options close to the expiration date. In the second part, we study a general class of hierarchical models for option pricing with stochastic volatility. We adopt the idea of an information cascade from long to short time scales, aiming to implement a hierarchical stochastic volatility model whose dynamics is described by a system of coupled stochastic differential equations. Assuming that the time scales of the different processes in the hierarchy are well separated, the stationary probability distribution for the volatility is obtained analiticaly in terms of a Meijer G-function. The option price is then computed as the average of the Black-Scholes formula over the volatility distribution, resulting in an explicit formula for the price in terms of a bivariate Meijer G-function. We also analyze the behavior of the theoretical price with the parameters of the model and we briefly compare it to empirical data from the Brazilian options market. In the third part, we study a stochastic model for the distribution of velocity increments in turbulent flows. As a basic hypothesis, we assume that the velocity increments distribution conditioned on a given energy transfer rate is a normal distribution whose variance is proportional to the energy transfer rate and whose mean depends linearly on the variance. The dynamics of the energy flux among the different scales of the hierarchy is described by a hierarchical stochastic process similar to that used in the second part of this thesis for the volatility. Therefore, the stationary distribution of the energy transfer rate is also expressed in terms of a Meijer G-function. The marginal probability distribution for the velocity increments is obtained as a statistical composition of the conditional distribution (Gaussian) with the distribution of the energy transfer rate (a G-function), which results in an asymmetric distribution written in terms of a bivariate Meijer G-function. Our model describes very well the asymmetry observed in empirical velocity increments distributions both from experimental data and numerical simulations of the Navier-Stokes equation.CAPESNesta tese apresentamos um estudo sobre a modelagem de fenômenos de flutuação com múltiplas escalas e suas aplicações a diversos problemas em econofísica e turbulência. A tese foi organizada em três partes de acordo com os diferentes problemas tratados. Na primeira parte, apresentamos um estudo empírico do mercado brasileiro de opções em que comparamos três modelos para precificação de opções, a saber: o modelo padrão de Black-Scholes, o modelo exponencial e o modelo baseado em uma distribuição q-Gaussiana ou distribuição de Tsallis. Encontramos que em aproximadamente 1=3 do total das cadeias de opções analisadas o modelo q-Gaussiano ajusta melhor os dados empíricos que o modelo Black-Scholes. Entretanto, entre esses casos, o modelo exponencial mostra melhores resultados que o modelo q-Gaussiano em 75 % das vezes. A superioridade do modelo exponencial sobre o modelo q-Gaussiano é particularmente notável para opções próximas da data de vencimento. Na segunda parte, estudamos uma classe geral de modelos hierárquicos para precificação de opções com volatilidade estocástica. Adotamos a ideia de uma cascata de informação de escalas longas de tempo para escalas curtas, com o objetivo de implementar um modelo hierárquico para a volatilidade em que a dinâmica da volatilidade é descrita por um sistema de equações diferenciais estocásticas acopladas. Sob a hipótese de que as escalas de tempo dos diferentes processos da hierarquia são bem separadas, a distribuição estacionária de probabilidade para a volatilidade é obtida de forma analítica em termos das funções G de Meijer. O preço da opção é então calculado como uma média da fórmula de Black-Scholes sobre a distribuição da volatilidade, resultando em uma fórmula explícita para o preço em termos de uma função G de duas variáveis. Estudamos ainda o comportamento do preço teórico com os diversos parâmetros do modelo e fazemos uma breve comparação com dados empíricos do mercado brasileiro de opções. Na terceira parte da tese, estudamos um modelo estatístico para a distribuição dos incrementos de velocidades em fluidos turbulentos. Como hipótese básica do modelo, assumimos que a distribuição de incrementos de velocidade condicionada a um dado fluxo de energia é uma gaussiana com uma variância proporcional ao fluxo de energia e uma média que depende linearmente da variância. A dinâmica do fluxo de energia entre as diferentes escalas da hierarquia é descrita por um processo estocástico hierárquico semelhante áquele usado para o modelo de volatilidade estudado na parte dois da tese. Desse modo, a distribuição estacionária do fluxo de energia também é escrita em termos de uma função G de Meijer. A distribuição de probabilidade marginal dos incrementos de velocidade é obtida como uma composição estatística da distribuição condicional (gaussiana) com a distribuição do fluxo de energia (função G). Como resultado dessa composição, obtemos uma distribuição de probabilidade assimétrica que é escrita em termos de uma função G de Meijer de duas variáveis. O nosso modelo descreve muito bem a assimetria observada nas distribuições empíricas dos incrementos de velocidade, tanto para dados experimentais quanto para dados de simulações númericas das equações de Navier-Stokes.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMecânica estatísticaDinâmica de FluidosSistemas Complexos HierárquicosHierarchical models for financial markets and turbulenceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE William Oswaldo Sosa Correa.pdf.jpgTESE William Oswaldo Sosa Correa.pdf.jpgGenerated Thumbnailimage/jpeg1210https://repositorio.ufpe.br/bitstream/123456789/31035/5/TESE%20William%20Oswaldo%20Sosa%20Correa.pdf.jpgdf0a881d927e4a21b8d26f06a569697cMD55ORIGINALTESE William Oswaldo Sosa Correa.pdfTESE William Oswaldo Sosa Correa.pdfapplication/pdf5366410https://repositorio.ufpe.br/bitstream/123456789/31035/1/TESE%20William%20Oswaldo%20Sosa%20Correa.pdf086783f7ac9ee7973945f64f9619ca01MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/31035/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/31035/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE William Oswaldo Sosa Correa.pdf.txtTESE William Oswaldo Sosa Correa.pdf.txtExtracted texttext/plain324171https://repositorio.ufpe.br/bitstream/123456789/31035/4/TESE%20William%20Oswaldo%20Sosa%20Correa.pdf.txtaa9416433f077f178149a22cd06fa200MD54123456789/310352019-10-25 10:33:30.816oai:repositorio.ufpe.br:123456789/31035TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T13:33:30Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Hierarchical models for financial markets and turbulence |
title |
Hierarchical models for financial markets and turbulence |
spellingShingle |
Hierarchical models for financial markets and turbulence SOSA CORREA, William Oswaldo Mecânica estatística Dinâmica de Fluidos Sistemas Complexos Hierárquicos |
title_short |
Hierarchical models for financial markets and turbulence |
title_full |
Hierarchical models for financial markets and turbulence |
title_fullStr |
Hierarchical models for financial markets and turbulence |
title_full_unstemmed |
Hierarchical models for financial markets and turbulence |
title_sort |
Hierarchical models for financial markets and turbulence |
author |
SOSA CORREA, William Oswaldo |
author_facet |
SOSA CORREA, William Oswaldo |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/1536313061903287 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/1091830046970956 |
dc.contributor.author.fl_str_mv |
SOSA CORREA, William Oswaldo |
dc.contributor.advisor1.fl_str_mv |
VASCONCELOS, Giovani Lopes |
contributor_str_mv |
VASCONCELOS, Giovani Lopes |
dc.subject.por.fl_str_mv |
Mecânica estatística Dinâmica de Fluidos Sistemas Complexos Hierárquicos |
topic |
Mecânica estatística Dinâmica de Fluidos Sistemas Complexos Hierárquicos |
description |
In this thesis we present a study about the modeling of multiscale fluctuation phenomena and its applications to different problems in econophysics and turbulence. The thesis was organized in three parts according to the different problems considered. In the first part, we present an empirical study of the Brazilian option market in light of three option pricing models, namely the Black-Scholes model, the exponential model, and a model based on a power law distribution, the so-called q-Gaussian distribution or Tsallis distribution. It is found that the q-Gaussian performs better than BlackScholes in about one-third of the option chains analyzed. But among these cases, the exponential model performs better than the q-Gaussian in 75% of the time. The superiority of the exponential model over the q-Gaussian model is particularly impressive for options close to the expiration date. In the second part, we study a general class of hierarchical models for option pricing with stochastic volatility. We adopt the idea of an information cascade from long to short time scales, aiming to implement a hierarchical stochastic volatility model whose dynamics is described by a system of coupled stochastic differential equations. Assuming that the time scales of the different processes in the hierarchy are well separated, the stationary probability distribution for the volatility is obtained analiticaly in terms of a Meijer G-function. The option price is then computed as the average of the Black-Scholes formula over the volatility distribution, resulting in an explicit formula for the price in terms of a bivariate Meijer G-function. We also analyze the behavior of the theoretical price with the parameters of the model and we briefly compare it to empirical data from the Brazilian options market. In the third part, we study a stochastic model for the distribution of velocity increments in turbulent flows. As a basic hypothesis, we assume that the velocity increments distribution conditioned on a given energy transfer rate is a normal distribution whose variance is proportional to the energy transfer rate and whose mean depends linearly on the variance. The dynamics of the energy flux among the different scales of the hierarchy is described by a hierarchical stochastic process similar to that used in the second part of this thesis for the volatility. Therefore, the stationary distribution of the energy transfer rate is also expressed in terms of a Meijer G-function. The marginal probability distribution for the velocity increments is obtained as a statistical composition of the conditional distribution (Gaussian) with the distribution of the energy transfer rate (a G-function), which results in an asymmetric distribution written in terms of a bivariate Meijer G-function. Our model describes very well the asymmetry observed in empirical velocity increments distributions both from experimental data and numerical simulations of the Navier-Stokes equation. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-04-05 |
dc.date.accessioned.fl_str_mv |
2019-06-11T23:29:42Z |
dc.date.available.fl_str_mv |
2019-06-11T23:29:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/31035 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000002wq8 |
url |
https://repositorio.ufpe.br/handle/123456789/31035 |
identifier_str_mv |
ark:/64986/0013000002wq8 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Fisica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/31035/5/TESE%20William%20Oswaldo%20Sosa%20Correa.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/31035/1/TESE%20William%20Oswaldo%20Sosa%20Correa.pdf https://repositorio.ufpe.br/bitstream/123456789/31035/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/31035/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/31035/4/TESE%20William%20Oswaldo%20Sosa%20Correa.pdf.txt |
bitstream.checksum.fl_str_mv |
df0a881d927e4a21b8d26f06a569697c 086783f7ac9ee7973945f64f9619ca01 e39d27027a6cc9cb039ad269a5db8e34 4b8a02c7f2818eaf00dcf2260dd5eb08 aa9416433f077f178149a22cd06fa200 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172704619200512 |