Seleção Ativa de Exemplos de Treinamento para Meta-Aprendizado
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000g28r |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/11584 |
Resumo: | Várias abordagens têm sido aplicadas à tarefa de seleção de algoritmos. Nesse contexto, Meta-Aprendizado surge como uma abordagem eficiente para predizer o desempenho de algoritmos adotando uma estratégia supervisionada. Os exemplos de treinamento de Meta-Aprendizado (ou meta-exemplos) são construídos a partir de um repositório de instâncias de problemas (como, por exemplo, um repositório de bases de dados de classificação). Cada meta-exemplo armazena características descritivas de uma instância de problema e um rótulo indicando o melhor algoritmo para o problema (empiricamente identificado entre um conjunto de algoritmos candidatos). Os melhores algoritmos para novos problemas podem ser preditos se baseando apenas em suas características descritivas, sem a necessidade de qualquer avaliação empírica adicional dos algoritmos candidatos. Apesar dos resultados Meta-Aprendizado requererem a implementação de um número suficiente de instâncias de problemas para produzir um conjunto rico de meta-exemplos. Abordagens recentes para gerar conjuntos de dados sintéticos ou manipulado foram adotados com sucesso no contexto de Meta-Aprendizado. Essas propostas incluem a abordagem de Datasetoids, que é uma técnica simples de manipulação de dados que permite a geração de novos conjuntos de dados a partir de bases existentes. Apesar dessas propostas produzirem dados relevantes para Meta-Aprendizado, eles podem eventualmente produzir instâncias de problemas redundantes ou até mesmo irrelevantes. Meta-Aprendizado Ativo surge nesse contexto para selecionar somente as instâncias mais informativas para a geração de meta-exemplos. Neste trabalho, investigamos o uso de Meta- Aprendizado Ativo combinado com Datasetoids, focando no uso do algoritmo Random forest em Meta-Aprendizado. Para selecionar as instâncias de problemas, implementamos um critério de incerteza baseado em entropia, específico para o Random forest. Também investigamos o uso de uma técnica de detecção de outliers a fim de remover a priori os problemas considerados outliers, objetivando melhorar o desempenho dos métodos de Aprendizagem Ativa. Nossos experimentos revelaram uma melhora no desempenho do Meta-Aprendizado e uma redução no custo computacional para a geração de meta-exemplos. |
id |
UFPE_8f7566714136c3b0359d1fa42d9f2ed1 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/11584 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Sousa, Arthur Fernandes Minduca dePrudêncio, Ricardo Bastos Cavalcante 2015-03-10T11:54:25Z2015-03-10T11:54:25Z2013-07-29SOUSA, Arthur Fernandes Minduca de. Seleção ativa de exemplos de treinamento para meta-aprendizado. Recife, 2013. 72 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013.https://repositorio.ufpe.br/handle/123456789/11584ark:/64986/001300000g28rVárias abordagens têm sido aplicadas à tarefa de seleção de algoritmos. Nesse contexto, Meta-Aprendizado surge como uma abordagem eficiente para predizer o desempenho de algoritmos adotando uma estratégia supervisionada. Os exemplos de treinamento de Meta-Aprendizado (ou meta-exemplos) são construídos a partir de um repositório de instâncias de problemas (como, por exemplo, um repositório de bases de dados de classificação). Cada meta-exemplo armazena características descritivas de uma instância de problema e um rótulo indicando o melhor algoritmo para o problema (empiricamente identificado entre um conjunto de algoritmos candidatos). Os melhores algoritmos para novos problemas podem ser preditos se baseando apenas em suas características descritivas, sem a necessidade de qualquer avaliação empírica adicional dos algoritmos candidatos. Apesar dos resultados Meta-Aprendizado requererem a implementação de um número suficiente de instâncias de problemas para produzir um conjunto rico de meta-exemplos. Abordagens recentes para gerar conjuntos de dados sintéticos ou manipulado foram adotados com sucesso no contexto de Meta-Aprendizado. Essas propostas incluem a abordagem de Datasetoids, que é uma técnica simples de manipulação de dados que permite a geração de novos conjuntos de dados a partir de bases existentes. Apesar dessas propostas produzirem dados relevantes para Meta-Aprendizado, eles podem eventualmente produzir instâncias de problemas redundantes ou até mesmo irrelevantes. Meta-Aprendizado Ativo surge nesse contexto para selecionar somente as instâncias mais informativas para a geração de meta-exemplos. Neste trabalho, investigamos o uso de Meta- Aprendizado Ativo combinado com Datasetoids, focando no uso do algoritmo Random forest em Meta-Aprendizado. Para selecionar as instâncias de problemas, implementamos um critério de incerteza baseado em entropia, específico para o Random forest. Também investigamos o uso de uma técnica de detecção de outliers a fim de remover a priori os problemas considerados outliers, objetivando melhorar o desempenho dos métodos de Aprendizagem Ativa. Nossos experimentos revelaram uma melhora no desempenho do Meta-Aprendizado e uma redução no custo computacional para a geração de meta-exemplos.porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMeta-AprendizadoSeleção de AlgoritmosAprendizagem AtivaUncertainty SamplingDetecção de OutliersSeleção Ativa de Exemplos de Treinamento para Meta-Aprendizadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDissertaçao Arthur Minduca.pdf.jpgDissertaçao Arthur Minduca.pdf.jpgGenerated Thumbnailimage/jpeg1324https://repositorio.ufpe.br/bitstream/123456789/11584/5/Disserta%c3%a7ao%20Arthur%20Minduca.pdf.jpg8304246fa5f41c089733eb1a5353aaaaMD55ORIGINALDissertaçao Arthur Minduca.pdfDissertaçao Arthur Minduca.pdfapplication/pdf1331924https://repositorio.ufpe.br/bitstream/123456789/11584/1/Disserta%c3%a7ao%20Arthur%20Minduca.pdfc5fbf43c427a68b5d9b2a75d156766cbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/11584/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/11584/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDissertaçao Arthur Minduca.pdf.txtDissertaçao Arthur Minduca.pdf.txtExtracted texttext/plain125018https://repositorio.ufpe.br/bitstream/123456789/11584/4/Disserta%c3%a7ao%20Arthur%20Minduca.pdf.txtad2f8b93ae1a6c9909e75f4ad302cebbMD54123456789/115842019-10-25 04:44:29.701oai:repositorio.ufpe.br:123456789/11584TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:44:29Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Seleção Ativa de Exemplos de Treinamento para Meta-Aprendizado |
title |
Seleção Ativa de Exemplos de Treinamento para Meta-Aprendizado |
spellingShingle |
Seleção Ativa de Exemplos de Treinamento para Meta-Aprendizado Sousa, Arthur Fernandes Minduca de Meta-Aprendizado Seleção de Algoritmos Aprendizagem Ativa Uncertainty Sampling Detecção de Outliers |
title_short |
Seleção Ativa de Exemplos de Treinamento para Meta-Aprendizado |
title_full |
Seleção Ativa de Exemplos de Treinamento para Meta-Aprendizado |
title_fullStr |
Seleção Ativa de Exemplos de Treinamento para Meta-Aprendizado |
title_full_unstemmed |
Seleção Ativa de Exemplos de Treinamento para Meta-Aprendizado |
title_sort |
Seleção Ativa de Exemplos de Treinamento para Meta-Aprendizado |
author |
Sousa, Arthur Fernandes Minduca de |
author_facet |
Sousa, Arthur Fernandes Minduca de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Sousa, Arthur Fernandes Minduca de |
dc.contributor.advisor1.fl_str_mv |
Prudêncio, Ricardo Bastos Cavalcante |
contributor_str_mv |
Prudêncio, Ricardo Bastos Cavalcante |
dc.subject.por.fl_str_mv |
Meta-Aprendizado Seleção de Algoritmos Aprendizagem Ativa Uncertainty Sampling Detecção de Outliers |
topic |
Meta-Aprendizado Seleção de Algoritmos Aprendizagem Ativa Uncertainty Sampling Detecção de Outliers |
description |
Várias abordagens têm sido aplicadas à tarefa de seleção de algoritmos. Nesse contexto, Meta-Aprendizado surge como uma abordagem eficiente para predizer o desempenho de algoritmos adotando uma estratégia supervisionada. Os exemplos de treinamento de Meta-Aprendizado (ou meta-exemplos) são construídos a partir de um repositório de instâncias de problemas (como, por exemplo, um repositório de bases de dados de classificação). Cada meta-exemplo armazena características descritivas de uma instância de problema e um rótulo indicando o melhor algoritmo para o problema (empiricamente identificado entre um conjunto de algoritmos candidatos). Os melhores algoritmos para novos problemas podem ser preditos se baseando apenas em suas características descritivas, sem a necessidade de qualquer avaliação empírica adicional dos algoritmos candidatos. Apesar dos resultados Meta-Aprendizado requererem a implementação de um número suficiente de instâncias de problemas para produzir um conjunto rico de meta-exemplos. Abordagens recentes para gerar conjuntos de dados sintéticos ou manipulado foram adotados com sucesso no contexto de Meta-Aprendizado. Essas propostas incluem a abordagem de Datasetoids, que é uma técnica simples de manipulação de dados que permite a geração de novos conjuntos de dados a partir de bases existentes. Apesar dessas propostas produzirem dados relevantes para Meta-Aprendizado, eles podem eventualmente produzir instâncias de problemas redundantes ou até mesmo irrelevantes. Meta-Aprendizado Ativo surge nesse contexto para selecionar somente as instâncias mais informativas para a geração de meta-exemplos. Neste trabalho, investigamos o uso de Meta- Aprendizado Ativo combinado com Datasetoids, focando no uso do algoritmo Random forest em Meta-Aprendizado. Para selecionar as instâncias de problemas, implementamos um critério de incerteza baseado em entropia, específico para o Random forest. Também investigamos o uso de uma técnica de detecção de outliers a fim de remover a priori os problemas considerados outliers, objetivando melhorar o desempenho dos métodos de Aprendizagem Ativa. Nossos experimentos revelaram uma melhora no desempenho do Meta-Aprendizado e uma redução no custo computacional para a geração de meta-exemplos. |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-07-29 |
dc.date.accessioned.fl_str_mv |
2015-03-10T11:54:25Z |
dc.date.available.fl_str_mv |
2015-03-10T11:54:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUSA, Arthur Fernandes Minduca de. Seleção ativa de exemplos de treinamento para meta-aprendizado. Recife, 2013. 72 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/11584 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000g28r |
identifier_str_mv |
SOUSA, Arthur Fernandes Minduca de. Seleção ativa de exemplos de treinamento para meta-aprendizado. Recife, 2013. 72 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013. ark:/64986/001300000g28r |
url |
https://repositorio.ufpe.br/handle/123456789/11584 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/11584/5/Disserta%c3%a7ao%20Arthur%20Minduca.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/11584/1/Disserta%c3%a7ao%20Arthur%20Minduca.pdf https://repositorio.ufpe.br/bitstream/123456789/11584/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/11584/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/11584/4/Disserta%c3%a7ao%20Arthur%20Minduca.pdf.txt |
bitstream.checksum.fl_str_mv |
8304246fa5f41c089733eb1a5353aaaa c5fbf43c427a68b5d9b2a75d156766cb 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 ad2f8b93ae1a6c9909e75f4ad302cebb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172814134575104 |