Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000011vsw |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/35196 |
Resumo: | Cooling plays an important role on data center (DC) availability, mitigating the Technology of Information (IT) components’ overheating. Although several works evaluate the performance of cooling subsystem in a DC, a few studies consider the significant relationship between cooling and IT subsystems. Moreover, a DC provider has limited tools in order to choose its IT and cooling components to obtain a desired availability subject to limited cost. This work provides scalable models (using Stochastic Petri Nets - SPN) to represent a cooling subsystem and to analyze its failures’ impact concerning financial costs and service downtime. This study also identifies the components that most impact on DC availability, as well as proposes a strategy to maximize the DC availability with a limited budget. Notwithstanding, the optimization process to maximize availability becomes very costly when used the proposed DC SPN models due to time-to-solve, which leads to the application of cheaper models, however, efficient, called surrogate models. In order to apply the most accurate surrogate model for optimization tasks, this work compares three surrogate models strategies. In the optimization, based on solutions obtained in the chosen surrogate model, there is a three-algorithm comparison to choose one with best results. Results show that a more redundant cooling architecture reduces costs in 70%. Cooling components’ analysis identified the chiller as the most impactful component concerning availability. Regarding surrogate models based on DC model, Gaussian Process (GP) obtained more confident results. Finally, Differential Evolution (DE) had the best results on availability’s maximization in a DC. |
id |
UFPE_97d99860a94bb39430b5d1a1baa232ff |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/35196 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
GOMES, Demis Moacirhttp://lattes.cnpq.br/5550030345753175http://lattes.cnpq.br/3776300004312848http://lattes.cnpq.br/6157118581200722SADOK, Djamel Fawzi HadjGONÇALVES, Glauco Estácio2019-11-07T19:22:57Z2019-11-07T19:22:57Z2019-03-07GOMES, Demis Moacir. Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019.https://repositorio.ufpe.br/handle/123456789/35196ark:/64986/0013000011vswCooling plays an important role on data center (DC) availability, mitigating the Technology of Information (IT) components’ overheating. Although several works evaluate the performance of cooling subsystem in a DC, a few studies consider the significant relationship between cooling and IT subsystems. Moreover, a DC provider has limited tools in order to choose its IT and cooling components to obtain a desired availability subject to limited cost. This work provides scalable models (using Stochastic Petri Nets - SPN) to represent a cooling subsystem and to analyze its failures’ impact concerning financial costs and service downtime. This study also identifies the components that most impact on DC availability, as well as proposes a strategy to maximize the DC availability with a limited budget. Notwithstanding, the optimization process to maximize availability becomes very costly when used the proposed DC SPN models due to time-to-solve, which leads to the application of cheaper models, however, efficient, called surrogate models. In order to apply the most accurate surrogate model for optimization tasks, this work compares three surrogate models strategies. In the optimization, based on solutions obtained in the chosen surrogate model, there is a three-algorithm comparison to choose one with best results. Results show that a more redundant cooling architecture reduces costs in 70%. Cooling components’ analysis identified the chiller as the most impactful component concerning availability. Regarding surrogate models based on DC model, Gaussian Process (GP) obtained more confident results. Finally, Differential Evolution (DE) had the best results on availability’s maximization in a DC.CNPqA refrigeração possui um papel importante na disponibilidade de um data center (DC), mitigando o superaquecimento dos equipamentos de Tecnologia da Informação (TI). Embora muitos trabalhos avaliem o desempenho do subsistema de refrigeração em um DC, poucos deles consideraram a relação importante entre os subsistemas de refrigeração e TI. Além disso, um provedor de DC possui ferramentas limitadas para escolher seus equipamentos de TI e refrigeração de modo a obter uma disponibilidade desejada mesmo com custos limitados. Este trabalho provê modelos escaláveis (usando Redes de Petri Estocásticas) para representar um subsistema de refrigeração e analisar o impacto de suas falhas com respeito a custos financeiros e downtime do serviço. O estudo também identifica os componentes que mais influenciam na disponibilidade do DC, além de propor uma estratégia para maximizar a disponibilidade do DC com um limitado orçamento. No entanto, a tarefa de otimização para maximizar a disponibilidade se torna extremamente custosa com o uso dos modelos estocásticos devido ao seu tempo de solução, o que leva à aplicação de modelos menos complexos porém muito eficientes, os chamados modelos surrogate. De modo a aplicar o modelo surrogate de melhor acurácia para tarefas de otimização, este trabalho compara três estratégias de modelo surrogate. Com respeito à otimização, outros três algoritmos são comparados a partir de soluções obtidas usando o modelo surrogate escolhido de modo a avaliar qual traz os melhores resultados. Os resultados mostram que a adoção de uma arquitetura de refrigeração mais redundante reduz os custos em cerca de 70%. A análise dos componentes de refrigeração identificou o chiller como o componente que mais afetou a disponibilidade. Em relação aos modelos surrogate baseados no modelo de DC, o Gaussian Process (GP) alcançou resultados mais confidentes. Por último, o Differential Evolution (DE) obteve os melhores resultados na maximização da disponibilidade de um DC.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAvaliação de desempenhoDisponibilidadeAnálise de sensibilidadeIdentifying the most critical components and maximizing their availability subject to limited cost in cooling subsystemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTDISSERTAÇÃO Demis Moacir Gomes.pdf.txtDISSERTAÇÃO Demis Moacir Gomes.pdf.txtExtracted texttext/plain167583https://repositorio.ufpe.br/bitstream/123456789/35196/4/DISSERTA%c3%87%c3%83O%20Demis%20Moacir%20Gomes.pdf.txt7c97efca9ff13d8d40e6ccfb776fed99MD54THUMBNAILDISSERTAÇÃO Demis Moacir Gomes.pdf.jpgDISSERTAÇÃO Demis Moacir Gomes.pdf.jpgGenerated Thumbnailimage/jpeg1298https://repositorio.ufpe.br/bitstream/123456789/35196/5/DISSERTA%c3%87%c3%83O%20Demis%20Moacir%20Gomes.pdf.jpgcff2fd2a47a7761ea9e128a44c1e0808MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufpe.br/bitstream/123456789/35196/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/35196/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALDISSERTAÇÃO Demis Moacir Gomes.pdfDISSERTAÇÃO Demis Moacir Gomes.pdfapplication/pdf2883225https://repositorio.ufpe.br/bitstream/123456789/35196/1/DISSERTA%c3%87%c3%83O%20Demis%20Moacir%20Gomes.pdf0ddf3d30dd3522873fe5aaf00b0af84bMD51123456789/351962019-11-08 02:14:56.669oai:repositorio.ufpe.br:123456789/35196Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-11-08T05:14:56Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems |
title |
Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems |
spellingShingle |
Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems GOMES, Demis Moacir Avaliação de desempenho Disponibilidade Análise de sensibilidade |
title_short |
Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems |
title_full |
Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems |
title_fullStr |
Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems |
title_full_unstemmed |
Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems |
title_sort |
Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems |
author |
GOMES, Demis Moacir |
author_facet |
GOMES, Demis Moacir |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5550030345753175 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3776300004312848 |
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6157118581200722 |
dc.contributor.author.fl_str_mv |
GOMES, Demis Moacir |
dc.contributor.advisor1.fl_str_mv |
SADOK, Djamel Fawzi Hadj |
dc.contributor.advisor-co1.fl_str_mv |
GONÇALVES, Glauco Estácio |
contributor_str_mv |
SADOK, Djamel Fawzi Hadj GONÇALVES, Glauco Estácio |
dc.subject.por.fl_str_mv |
Avaliação de desempenho Disponibilidade Análise de sensibilidade |
topic |
Avaliação de desempenho Disponibilidade Análise de sensibilidade |
description |
Cooling plays an important role on data center (DC) availability, mitigating the Technology of Information (IT) components’ overheating. Although several works evaluate the performance of cooling subsystem in a DC, a few studies consider the significant relationship between cooling and IT subsystems. Moreover, a DC provider has limited tools in order to choose its IT and cooling components to obtain a desired availability subject to limited cost. This work provides scalable models (using Stochastic Petri Nets - SPN) to represent a cooling subsystem and to analyze its failures’ impact concerning financial costs and service downtime. This study also identifies the components that most impact on DC availability, as well as proposes a strategy to maximize the DC availability with a limited budget. Notwithstanding, the optimization process to maximize availability becomes very costly when used the proposed DC SPN models due to time-to-solve, which leads to the application of cheaper models, however, efficient, called surrogate models. In order to apply the most accurate surrogate model for optimization tasks, this work compares three surrogate models strategies. In the optimization, based on solutions obtained in the chosen surrogate model, there is a three-algorithm comparison to choose one with best results. Results show that a more redundant cooling architecture reduces costs in 70%. Cooling components’ analysis identified the chiller as the most impactful component concerning availability. Regarding surrogate models based on DC model, Gaussian Process (GP) obtained more confident results. Finally, Differential Evolution (DE) had the best results on availability’s maximization in a DC. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-11-07T19:22:57Z |
dc.date.available.fl_str_mv |
2019-11-07T19:22:57Z |
dc.date.issued.fl_str_mv |
2019-03-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GOMES, Demis Moacir. Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/35196 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000011vsw |
identifier_str_mv |
GOMES, Demis Moacir. Identifying the most critical components and maximizing their availability subject to limited cost in cooling subsystems. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2019. ark:/64986/0013000011vsw |
url |
https://repositorio.ufpe.br/handle/123456789/35196 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/35196/4/DISSERTA%c3%87%c3%83O%20Demis%20Moacir%20Gomes.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/35196/5/DISSERTA%c3%87%c3%83O%20Demis%20Moacir%20Gomes.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/35196/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/35196/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/35196/1/DISSERTA%c3%87%c3%83O%20Demis%20Moacir%20Gomes.pdf |
bitstream.checksum.fl_str_mv |
7c97efca9ff13d8d40e6ccfb776fed99 cff2fd2a47a7761ea9e128a44c1e0808 8a4605be74aa9ea9d79846c1fba20a33 e39d27027a6cc9cb039ad269a5db8e34 0ddf3d30dd3522873fe5aaf00b0af84b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172975887908864 |