Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens

Detalhes bibliográficos
Autor(a) principal: COSTA, Diogo Cavalcanti
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000053c7
Texto Completo: https://repositorio.ufpe.br/handle/123456789/2704
Resumo: Neste trabalho apresentamos um novo modelo neural para segmentação de imagens, baseado nos Mapas Auto-organizáveis SOM (Mapa Auto-organizável - Self-organizing Map) e GWR (Crescer Quando Requerido - Grow When Required) chamado de LARFSOM (Mapa Auto-organizável com Campo Receptivo Adaptativo Local - Local Adaptive Receptive Field Self-organizing Map). As características principais do modelo são: número adaptativo de nodos, topologia variável, inserção de novos nodos baseada em uma medida de similaridade dos protótipos existentes em relação ao padrão de entrada aferida por meio de campo receptivo, remoção de nodos com informações não significativas ao final do treinamento, rápida convergência e baixo custo de processamento para o treinamento. A rede LARFSOM é capaz de segmentar imagens por cor ou por borda: a primeira, é feita através do agrupamento de informações ocorrido no treinamento da rede LAFRSOM seguido de um processo de quantização de cores; já a segunda, ocorre pelo acréscimo de dois nodos RBF (Função de Base Radial - Radial Basis Function) à rede LARFSOM, criando um modelo de dois estágios chamado LARFSOM-RBF. Adicionalmente, o modelo é capaz de salvar em um formato variante do BMP indexado tanto a rede treinada como as informações espaciais dos pixels da imagem. Acrescido de compactação tipo ZIP o arquivo a ser salvo torna-se bem reduzido. Comparações com outros modelos neurais como o SOM, FS-SOM (Mapa Auto-organizável Sensível à Freqüência - Frequency Sensitive Self-organizing Map) e GNG (Gás Neural Crescente - Growing Neural Gas) são feitas mediante segmentação de imagens do mundo real com diferentes níveis de complexidade. Técnicas de processamento de imagens e o formato JPEG são usados para fins de comparação. Os resultados mostram que a rede LARFSOM atinge maior variação de cores da paleta e melhor distribuição espacial 3D RGB das cores selecionadas que os demais modelos. A qualidade das imagens geradas também figura entre os melhores resultados obtidos
id UFPE_a0f7d362889d9543bde687a64a8ccf39
oai_identifier_str oai:repositorio.ufpe.br:123456789/2704
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling COSTA, Diogo CavalcantiARAÚJO, Aluizio Fausto Ribeiro2014-06-12T16:00:25Z2014-06-12T16:00:25Z2007Cavalcanti Costa, Diogo; Fausto Ribeiro Araújo, Aluizio. Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2007.https://repositorio.ufpe.br/handle/123456789/2704ark:/64986/00130000053c7Neste trabalho apresentamos um novo modelo neural para segmentação de imagens, baseado nos Mapas Auto-organizáveis SOM (Mapa Auto-organizável - Self-organizing Map) e GWR (Crescer Quando Requerido - Grow When Required) chamado de LARFSOM (Mapa Auto-organizável com Campo Receptivo Adaptativo Local - Local Adaptive Receptive Field Self-organizing Map). As características principais do modelo são: número adaptativo de nodos, topologia variável, inserção de novos nodos baseada em uma medida de similaridade dos protótipos existentes em relação ao padrão de entrada aferida por meio de campo receptivo, remoção de nodos com informações não significativas ao final do treinamento, rápida convergência e baixo custo de processamento para o treinamento. A rede LARFSOM é capaz de segmentar imagens por cor ou por borda: a primeira, é feita através do agrupamento de informações ocorrido no treinamento da rede LAFRSOM seguido de um processo de quantização de cores; já a segunda, ocorre pelo acréscimo de dois nodos RBF (Função de Base Radial - Radial Basis Function) à rede LARFSOM, criando um modelo de dois estágios chamado LARFSOM-RBF. Adicionalmente, o modelo é capaz de salvar em um formato variante do BMP indexado tanto a rede treinada como as informações espaciais dos pixels da imagem. Acrescido de compactação tipo ZIP o arquivo a ser salvo torna-se bem reduzido. Comparações com outros modelos neurais como o SOM, FS-SOM (Mapa Auto-organizável Sensível à Freqüência - Frequency Sensitive Self-organizing Map) e GNG (Gás Neural Crescente - Growing Neural Gas) são feitas mediante segmentação de imagens do mundo real com diferentes níveis de complexidade. Técnicas de processamento de imagens e o formato JPEG são usados para fins de comparação. Os resultados mostram que a rede LARFSOM atinge maior variação de cores da paleta e melhor distribuição espacial 3D RGB das cores selecionadas que os demais modelos. A qualidade das imagens geradas também figura entre os melhores resultados obtidosConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMapas auto-organizáveis (SOMs)Crescer quando requerido (GWR)Função de base radial (RBF)Redes neuraisProcessamento de imagensSegmentação de imagensSegmentação por corSegmentação por bordaRepresentação/compactação de imagensMapa auto-organizável com campo receptivo adaptativo local para segmentação de imagensinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo6557_1.pdf.jpgarquivo6557_1.pdf.jpgGenerated Thumbnailimage/jpeg1345https://repositorio.ufpe.br/bitstream/123456789/2704/4/arquivo6557_1.pdf.jpg92fb866a1e7af9a011a49622a87a4162MD54ORIGINALarquivo6557_1.pdfapplication/pdf4867823https://repositorio.ufpe.br/bitstream/123456789/2704/1/arquivo6557_1.pdf64578a5cde42f460f0745045ec1bb555MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2704/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo6557_1.pdf.txtarquivo6557_1.pdf.txtExtracted texttext/plain220803https://repositorio.ufpe.br/bitstream/123456789/2704/3/arquivo6557_1.pdf.txta521753eea3583c3f92401888478079bMD53123456789/27042019-10-25 15:51:42.579oai:repositorio.ufpe.br:123456789/2704Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T18:51:42Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens
title Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens
spellingShingle Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens
COSTA, Diogo Cavalcanti
Mapas auto-organizáveis (SOMs)
Crescer quando requerido (GWR)
Função de base radial (RBF)
Redes neurais
Processamento de imagens
Segmentação de imagens
Segmentação por cor
Segmentação por borda
Representação/compactação de imagens
title_short Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens
title_full Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens
title_fullStr Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens
title_full_unstemmed Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens
title_sort Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens
author COSTA, Diogo Cavalcanti
author_facet COSTA, Diogo Cavalcanti
author_role author
dc.contributor.author.fl_str_mv COSTA, Diogo Cavalcanti
dc.contributor.advisor1.fl_str_mv ARAÚJO, Aluizio Fausto Ribeiro
contributor_str_mv ARAÚJO, Aluizio Fausto Ribeiro
dc.subject.por.fl_str_mv Mapas auto-organizáveis (SOMs)
Crescer quando requerido (GWR)
Função de base radial (RBF)
Redes neurais
Processamento de imagens
Segmentação de imagens
Segmentação por cor
Segmentação por borda
Representação/compactação de imagens
topic Mapas auto-organizáveis (SOMs)
Crescer quando requerido (GWR)
Função de base radial (RBF)
Redes neurais
Processamento de imagens
Segmentação de imagens
Segmentação por cor
Segmentação por borda
Representação/compactação de imagens
description Neste trabalho apresentamos um novo modelo neural para segmentação de imagens, baseado nos Mapas Auto-organizáveis SOM (Mapa Auto-organizável - Self-organizing Map) e GWR (Crescer Quando Requerido - Grow When Required) chamado de LARFSOM (Mapa Auto-organizável com Campo Receptivo Adaptativo Local - Local Adaptive Receptive Field Self-organizing Map). As características principais do modelo são: número adaptativo de nodos, topologia variável, inserção de novos nodos baseada em uma medida de similaridade dos protótipos existentes em relação ao padrão de entrada aferida por meio de campo receptivo, remoção de nodos com informações não significativas ao final do treinamento, rápida convergência e baixo custo de processamento para o treinamento. A rede LARFSOM é capaz de segmentar imagens por cor ou por borda: a primeira, é feita através do agrupamento de informações ocorrido no treinamento da rede LAFRSOM seguido de um processo de quantização de cores; já a segunda, ocorre pelo acréscimo de dois nodos RBF (Função de Base Radial - Radial Basis Function) à rede LARFSOM, criando um modelo de dois estágios chamado LARFSOM-RBF. Adicionalmente, o modelo é capaz de salvar em um formato variante do BMP indexado tanto a rede treinada como as informações espaciais dos pixels da imagem. Acrescido de compactação tipo ZIP o arquivo a ser salvo torna-se bem reduzido. Comparações com outros modelos neurais como o SOM, FS-SOM (Mapa Auto-organizável Sensível à Freqüência - Frequency Sensitive Self-organizing Map) e GNG (Gás Neural Crescente - Growing Neural Gas) são feitas mediante segmentação de imagens do mundo real com diferentes níveis de complexidade. Técnicas de processamento de imagens e o formato JPEG são usados para fins de comparação. Os resultados mostram que a rede LARFSOM atinge maior variação de cores da paleta e melhor distribuição espacial 3D RGB das cores selecionadas que os demais modelos. A qualidade das imagens geradas também figura entre os melhores resultados obtidos
publishDate 2007
dc.date.issued.fl_str_mv 2007
dc.date.accessioned.fl_str_mv 2014-06-12T16:00:25Z
dc.date.available.fl_str_mv 2014-06-12T16:00:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Cavalcanti Costa, Diogo; Fausto Ribeiro Araújo, Aluizio. Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2007.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/2704
dc.identifier.dark.fl_str_mv ark:/64986/00130000053c7
identifier_str_mv Cavalcanti Costa, Diogo; Fausto Ribeiro Araújo, Aluizio. Mapa auto-organizável com campo receptivo adaptativo local para segmentação de imagens. 2007. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2007.
ark:/64986/00130000053c7
url https://repositorio.ufpe.br/handle/123456789/2704
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/2704/4/arquivo6557_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/2704/1/arquivo6557_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/2704/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/2704/3/arquivo6557_1.pdf.txt
bitstream.checksum.fl_str_mv 92fb866a1e7af9a011a49622a87a4162
64578a5cde42f460f0745045ec1bb555
8a4605be74aa9ea9d79846c1fba20a33
a521753eea3583c3f92401888478079b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172726554361856