Algoritmos de seleção de características personalizados por classe para categorização de texto
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000000zkv |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/21130 |
Resumo: | A categorização de textos é uma importante ferramenta para organização e recuperação de informações em documentos digitais. Uma abordagem comum é representar cada palavra como uma característica. Entretanto, a maior parte das características em um documento textual são irrelevantes para sua categorização. Assim, a redução de dimensionalidade é um passo fundamental para melhorar o desempenho de classificação e reduzir o alto custo computacional inerente a problemas de alta dimensionalidade, como é o caso da categorização de textos. A estratégia mais utilizada para redução de dimensionalidade em categorização de textos passa por métodos de seleção de características baseados em filtragem. Métodos deste tipo exigem um esforço para configurar o tamanho do vetor final de características. Este trabalho propõe métodos de filtragem com o intuito melhorar o desempenho de classificação em comparação com os métodos atuais e de tornar possível a automatização da escolha do tamanho do vetor final de características. O primeiro método proposto, chamado Category-dependent Maximum f Features per Document-Reduced (cMFDR), define um limiar para cada categoria para determinar quais documentos serão considerados no processo de seleção de características. O método utiliza um parâmetro para definir quantas características são selecionadas por documento. Esta abordagem apresenta algumas vantagens, como a simplificação do processo de escolha do subconjunto mais efetivo através de uma drástica redução da quantidade de possíveis configurações. O segundo método proposto, Automatic Feature Subsets Analyzer (AFSA), introduz um procedimento para determinar, de maneira guiada por dados, o melhor subconjunto de características dentre um número de subconjuntos gerados. Este método utiliza o mesmo parâmetro usado por cMFDR para definir a quantidade de características no vetor final. Isto permite que a busca pelo melhor subconjunto tenha um baixo custo computacional. O desempenho dos métodos propostos foram avaliados nas bases de dados WebKB, Reuters, 20 Newsgroup e TDT2, utilizando as funções de avaliação de características Bi-Normal Separation, Class Discriminating Measure e Chi-Squared Statistics. Os resultados dos experimentos demonstraram uma maior efetividade dos métodos propostos em relação aos métodos do estado da arte. |
id |
UFPE_a1a98a0f419a2690dad06c19b309374f |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/21130 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
FRAGOSO, Rogério César Peixotohttp://lattes.cnpq.br/3641521745238692http://lattes.cnpq.br/8577312109146354CAVALCANTI, George Darmiton da Cunha2017-08-31T19:39:48Z2017-08-31T19:39:48Z2016-08-26https://repositorio.ufpe.br/handle/123456789/21130ark:/64986/0013000000zkvA categorização de textos é uma importante ferramenta para organização e recuperação de informações em documentos digitais. Uma abordagem comum é representar cada palavra como uma característica. Entretanto, a maior parte das características em um documento textual são irrelevantes para sua categorização. Assim, a redução de dimensionalidade é um passo fundamental para melhorar o desempenho de classificação e reduzir o alto custo computacional inerente a problemas de alta dimensionalidade, como é o caso da categorização de textos. A estratégia mais utilizada para redução de dimensionalidade em categorização de textos passa por métodos de seleção de características baseados em filtragem. Métodos deste tipo exigem um esforço para configurar o tamanho do vetor final de características. Este trabalho propõe métodos de filtragem com o intuito melhorar o desempenho de classificação em comparação com os métodos atuais e de tornar possível a automatização da escolha do tamanho do vetor final de características. O primeiro método proposto, chamado Category-dependent Maximum f Features per Document-Reduced (cMFDR), define um limiar para cada categoria para determinar quais documentos serão considerados no processo de seleção de características. O método utiliza um parâmetro para definir quantas características são selecionadas por documento. Esta abordagem apresenta algumas vantagens, como a simplificação do processo de escolha do subconjunto mais efetivo através de uma drástica redução da quantidade de possíveis configurações. O segundo método proposto, Automatic Feature Subsets Analyzer (AFSA), introduz um procedimento para determinar, de maneira guiada por dados, o melhor subconjunto de características dentre um número de subconjuntos gerados. Este método utiliza o mesmo parâmetro usado por cMFDR para definir a quantidade de características no vetor final. Isto permite que a busca pelo melhor subconjunto tenha um baixo custo computacional. O desempenho dos métodos propostos foram avaliados nas bases de dados WebKB, Reuters, 20 Newsgroup e TDT2, utilizando as funções de avaliação de características Bi-Normal Separation, Class Discriminating Measure e Chi-Squared Statistics. Os resultados dos experimentos demonstraram uma maior efetividade dos métodos propostos em relação aos métodos do estado da arte.Text categorization is an important technic to organize and retrieve information from digital documents. A common approach is to represent each word as a feature. However most of the features in a textual document is irrelevant to its categorization. Thus, dimensionality reduction is a fundamental step to improve classification performance and diminish the high computational cost inherent to high dimensional problems, such as text categorization. The most commonly adopted strategy for dimensionality reduction in text categorization undergoes feature selection methods based on filtering. This kind of method requires an effort to configure the size of the final feature vector. This work proposes filtering methods aiming to improve categorization performence comparing to state-of-the-art methods and to provide a possibility of automitic determination of the size of the final feature set. The first proposed method, namely Category-dependent Maximum f Features per Document-Reduced (cMFDR), sets a threshold for each category that determines which documents are considered in feature selection process. The method uses a parameter to arbitrate how many features are selected per document. This approach presents some advantages, such as simplifying the process of choosing the most effective subset through a strong reduction of the number of possible configurations. The second proposed method, Automatic Feature Subsets Analyzer (AFSA), presents a procedure to determine, in a data driven way, the most effective subset among a number of generated subsets. This method uses the same parameter used by cMFDR to define the size of the final feature vector. This fact leads to lower computational costs to find the most effective set. The performance of the proposed methods was assessed in WebKB, Reuters, 20 Newsgroup and TDT2 datasets, using Bi-Normal Separation, Class Discriminating Measure and Chi-Squared Statistics feature evaluations functions. The experimental results demonstrates that the proposed methods are more effective than state-of-art methods.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessSeleção de características. Redução de dimensionalidade. Categorização de textos.Text categorization. Dimensionality reduction. Feature selection.Algoritmos de seleção de características personalizados por classe para categorização de textoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILRogerio_Fragoso.pdf.jpgRogerio_Fragoso.pdf.jpgGenerated Thumbnailimage/jpeg1139https://repositorio.ufpe.br/bitstream/123456789/21130/5/Rogerio_Fragoso.pdf.jpg9739f7099f2a64a5125ed945eec83af2MD55ORIGINALRogerio_Fragoso.pdfRogerio_Fragoso.pdfapplication/pdf1117500https://repositorio.ufpe.br/bitstream/123456789/21130/1/Rogerio_Fragoso.pdf3e7915ee5c34322de3a8358d59679961MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/21130/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/21130/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTRogerio_Fragoso.pdf.txtRogerio_Fragoso.pdf.txtExtracted texttext/plain151342https://repositorio.ufpe.br/bitstream/123456789/21130/4/Rogerio_Fragoso.pdf.txt0bc832cb8568f4ce593c492d9c7df687MD54123456789/211302019-10-25 07:32:31.096oai:repositorio.ufpe.br:123456789/21130TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T10:32:31Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Algoritmos de seleção de características personalizados por classe para categorização de texto |
title |
Algoritmos de seleção de características personalizados por classe para categorização de texto |
spellingShingle |
Algoritmos de seleção de características personalizados por classe para categorização de texto FRAGOSO, Rogério César Peixoto Seleção de características. Redução de dimensionalidade. Categorização de textos. Text categorization. Dimensionality reduction. Feature selection. |
title_short |
Algoritmos de seleção de características personalizados por classe para categorização de texto |
title_full |
Algoritmos de seleção de características personalizados por classe para categorização de texto |
title_fullStr |
Algoritmos de seleção de características personalizados por classe para categorização de texto |
title_full_unstemmed |
Algoritmos de seleção de características personalizados por classe para categorização de texto |
title_sort |
Algoritmos de seleção de características personalizados por classe para categorização de texto |
author |
FRAGOSO, Rogério César Peixoto |
author_facet |
FRAGOSO, Rogério César Peixoto |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3641521745238692 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/8577312109146354 |
dc.contributor.author.fl_str_mv |
FRAGOSO, Rogério César Peixoto |
dc.contributor.advisor1.fl_str_mv |
CAVALCANTI, George Darmiton da Cunha |
contributor_str_mv |
CAVALCANTI, George Darmiton da Cunha |
dc.subject.por.fl_str_mv |
Seleção de características. Redução de dimensionalidade. Categorização de textos. Text categorization. Dimensionality reduction. Feature selection. |
topic |
Seleção de características. Redução de dimensionalidade. Categorização de textos. Text categorization. Dimensionality reduction. Feature selection. |
description |
A categorização de textos é uma importante ferramenta para organização e recuperação de informações em documentos digitais. Uma abordagem comum é representar cada palavra como uma característica. Entretanto, a maior parte das características em um documento textual são irrelevantes para sua categorização. Assim, a redução de dimensionalidade é um passo fundamental para melhorar o desempenho de classificação e reduzir o alto custo computacional inerente a problemas de alta dimensionalidade, como é o caso da categorização de textos. A estratégia mais utilizada para redução de dimensionalidade em categorização de textos passa por métodos de seleção de características baseados em filtragem. Métodos deste tipo exigem um esforço para configurar o tamanho do vetor final de características. Este trabalho propõe métodos de filtragem com o intuito melhorar o desempenho de classificação em comparação com os métodos atuais e de tornar possível a automatização da escolha do tamanho do vetor final de características. O primeiro método proposto, chamado Category-dependent Maximum f Features per Document-Reduced (cMFDR), define um limiar para cada categoria para determinar quais documentos serão considerados no processo de seleção de características. O método utiliza um parâmetro para definir quantas características são selecionadas por documento. Esta abordagem apresenta algumas vantagens, como a simplificação do processo de escolha do subconjunto mais efetivo através de uma drástica redução da quantidade de possíveis configurações. O segundo método proposto, Automatic Feature Subsets Analyzer (AFSA), introduz um procedimento para determinar, de maneira guiada por dados, o melhor subconjunto de características dentre um número de subconjuntos gerados. Este método utiliza o mesmo parâmetro usado por cMFDR para definir a quantidade de características no vetor final. Isto permite que a busca pelo melhor subconjunto tenha um baixo custo computacional. O desempenho dos métodos propostos foram avaliados nas bases de dados WebKB, Reuters, 20 Newsgroup e TDT2, utilizando as funções de avaliação de características Bi-Normal Separation, Class Discriminating Measure e Chi-Squared Statistics. Os resultados dos experimentos demonstraram uma maior efetividade dos métodos propostos em relação aos métodos do estado da arte. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-08-26 |
dc.date.accessioned.fl_str_mv |
2017-08-31T19:39:48Z |
dc.date.available.fl_str_mv |
2017-08-31T19:39:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/21130 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000000zkv |
url |
https://repositorio.ufpe.br/handle/123456789/21130 |
identifier_str_mv |
ark:/64986/0013000000zkv |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/21130/5/Rogerio_Fragoso.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/21130/1/Rogerio_Fragoso.pdf https://repositorio.ufpe.br/bitstream/123456789/21130/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/21130/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/21130/4/Rogerio_Fragoso.pdf.txt |
bitstream.checksum.fl_str_mv |
9739f7099f2a64a5125ed945eec83af2 3e7915ee5c34322de3a8358d59679961 e39d27027a6cc9cb039ad269a5db8e34 4b8a02c7f2818eaf00dcf2260dd5eb08 0bc832cb8568f4ce593c492d9c7df687 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172685559234560 |