Matróides binárias com circunferência 6
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000tjmp |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/7150 |
Resumo: | A caracterização de matróides através de sua circunferência iniciou-se com a publicação dos artigos Matroids Having Small Circumference, Combinatorics, Probability and Compumting (2001) 10, 349-360 e Connected matroids with a small circumference, Discrete Mathematics 259 (2002) 147-161 de Braulio Maia Junior e Manoel Lemos, onde eles construíram todas as matróides com circunferência menor ou igual a 5. Recentemente, em The 3-connected binary matroids with circumference 6 or 7, European Jounal of Combinatorics ( a ser publicado), Raul Cordovil,Maia Junior e Lemos construíram todas as matróides binárias 3-conexas de circunferência 6 e 7, contudo eles trabalharam apenas com matróides de posto pelo menos 8. Nesta tese construímos todas as matróides binárias de circunferência 6 e posto pequeno, isto é, as matróides de posto 5, 6 e 7. Com base no resultado de Bixby(1972), Cunningham(1973) e Seymour(1980), que diz: Uma matróide 2-conexa M não é 3-conexa se e somente se M = M1⊕2M2, onde M1 e M2 são matróides conexas, cada uma isomorfa a um menor próprio de M, concluímos que para estudar as matróides de posto pequeno é suficiente conhecer as matróides binárias com e-circunferência 3, 4 e 5. Como Maia Junior já havia construído as matróides 3-conexas com e-circunferência 3 e 4, bastava-nos construir as matróides binárias com e-circunferência 4 e 5. Iniciamos descrevendo todas as matróides 3-conexas binárias de circunferência 6 e posto 7 e posteriormente descrevemos todas as matróides binárias 3-conexas com circunferência 6 e posto 6. Assim foi possível conhecer todas as matróides 3-conexas com e-circunferência 5. Conseguimos também construir as matróides binárias não 3-conexas com e-circunferência 4 e 5. Estes resultados nos fornecem uma completa descrição de todas as matróides binárias não 3-conexas de circunferência 6 e posto pequeno |
id |
UFPE_a8e2948bce5ad7376164ee43fdff2d83 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/7150 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Souza Araújo, AdemaksonJosé Machado Soares Lemos, Manoel 2014-06-12T18:29:19Z2014-06-12T18:29:19Z2009-01-31Souza Araújo, Ademakson; José Machado Soares Lemos, Manoel. Matróides binárias com circunferência 6. 2009. Tese (Doutorado). Programa de Pós-Graduação em Matemática Computacional, Universidade Federal de Pernambuco, Recife, 2009.https://repositorio.ufpe.br/handle/123456789/7150ark:/64986/001300000tjmpA caracterização de matróides através de sua circunferência iniciou-se com a publicação dos artigos Matroids Having Small Circumference, Combinatorics, Probability and Compumting (2001) 10, 349-360 e Connected matroids with a small circumference, Discrete Mathematics 259 (2002) 147-161 de Braulio Maia Junior e Manoel Lemos, onde eles construíram todas as matróides com circunferência menor ou igual a 5. Recentemente, em The 3-connected binary matroids with circumference 6 or 7, European Jounal of Combinatorics ( a ser publicado), Raul Cordovil,Maia Junior e Lemos construíram todas as matróides binárias 3-conexas de circunferência 6 e 7, contudo eles trabalharam apenas com matróides de posto pelo menos 8. Nesta tese construímos todas as matróides binárias de circunferência 6 e posto pequeno, isto é, as matróides de posto 5, 6 e 7. Com base no resultado de Bixby(1972), Cunningham(1973) e Seymour(1980), que diz: Uma matróide 2-conexa M não é 3-conexa se e somente se M = M1⊕2M2, onde M1 e M2 são matróides conexas, cada uma isomorfa a um menor próprio de M, concluímos que para estudar as matróides de posto pequeno é suficiente conhecer as matróides binárias com e-circunferência 3, 4 e 5. Como Maia Junior já havia construído as matróides 3-conexas com e-circunferência 3 e 4, bastava-nos construir as matróides binárias com e-circunferência 4 e 5. Iniciamos descrevendo todas as matróides 3-conexas binárias de circunferência 6 e posto 7 e posteriormente descrevemos todas as matróides binárias 3-conexas com circunferência 6 e posto 6. Assim foi possível conhecer todas as matróides 3-conexas com e-circunferência 5. Conseguimos também construir as matróides binárias não 3-conexas com e-circunferência 4 e 5. Estes resultados nos fornecem uma completa descrição de todas as matróides binárias não 3-conexas de circunferência 6 e posto pequenoFundação de Amparo a Pesquisa do Estado da BahiaporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMatróideBináriaCircuitoCircunferênciaE-circunferênciaPostoConexa3-conexaIsomorfaMatróides binárias com circunferência 6info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo4282_1.pdf.jpgarquivo4282_1.pdf.jpgGenerated Thumbnailimage/jpeg1396https://repositorio.ufpe.br/bitstream/123456789/7150/4/arquivo4282_1.pdf.jpg16a073667b34a3a95ec717a6f74423b3MD54ORIGINALarquivo4282_1.pdfapplication/pdf1806381https://repositorio.ufpe.br/bitstream/123456789/7150/1/arquivo4282_1.pdfd8e5341810eebc7820e9231598a88d15MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/7150/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo4282_1.pdf.txtarquivo4282_1.pdf.txtExtracted texttext/plain385405https://repositorio.ufpe.br/bitstream/123456789/7150/3/arquivo4282_1.pdf.txt58b263ff8056a319d9d38de37f235d25MD53123456789/71502019-10-25 14:26:38.889oai:repositorio.ufpe.br:123456789/7150Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T17:26:38Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Matróides binárias com circunferência 6 |
title |
Matróides binárias com circunferência 6 |
spellingShingle |
Matróides binárias com circunferência 6 Souza Araújo, Ademakson Matróide Binária Circuito Circunferência E-circunferência Posto Conexa 3-conexa Isomorfa |
title_short |
Matróides binárias com circunferência 6 |
title_full |
Matróides binárias com circunferência 6 |
title_fullStr |
Matróides binárias com circunferência 6 |
title_full_unstemmed |
Matróides binárias com circunferência 6 |
title_sort |
Matróides binárias com circunferência 6 |
author |
Souza Araújo, Ademakson |
author_facet |
Souza Araújo, Ademakson |
author_role |
author |
dc.contributor.author.fl_str_mv |
Souza Araújo, Ademakson |
dc.contributor.advisor1.fl_str_mv |
José Machado Soares Lemos, Manoel |
contributor_str_mv |
José Machado Soares Lemos, Manoel |
dc.subject.por.fl_str_mv |
Matróide Binária Circuito Circunferência E-circunferência Posto Conexa 3-conexa Isomorfa |
topic |
Matróide Binária Circuito Circunferência E-circunferência Posto Conexa 3-conexa Isomorfa |
description |
A caracterização de matróides através de sua circunferência iniciou-se com a publicação dos artigos Matroids Having Small Circumference, Combinatorics, Probability and Compumting (2001) 10, 349-360 e Connected matroids with a small circumference, Discrete Mathematics 259 (2002) 147-161 de Braulio Maia Junior e Manoel Lemos, onde eles construíram todas as matróides com circunferência menor ou igual a 5. Recentemente, em The 3-connected binary matroids with circumference 6 or 7, European Jounal of Combinatorics ( a ser publicado), Raul Cordovil,Maia Junior e Lemos construíram todas as matróides binárias 3-conexas de circunferência 6 e 7, contudo eles trabalharam apenas com matróides de posto pelo menos 8. Nesta tese construímos todas as matróides binárias de circunferência 6 e posto pequeno, isto é, as matróides de posto 5, 6 e 7. Com base no resultado de Bixby(1972), Cunningham(1973) e Seymour(1980), que diz: Uma matróide 2-conexa M não é 3-conexa se e somente se M = M1⊕2M2, onde M1 e M2 são matróides conexas, cada uma isomorfa a um menor próprio de M, concluímos que para estudar as matróides de posto pequeno é suficiente conhecer as matróides binárias com e-circunferência 3, 4 e 5. Como Maia Junior já havia construído as matróides 3-conexas com e-circunferência 3 e 4, bastava-nos construir as matróides binárias com e-circunferência 4 e 5. Iniciamos descrevendo todas as matróides 3-conexas binárias de circunferência 6 e posto 7 e posteriormente descrevemos todas as matróides binárias 3-conexas com circunferência 6 e posto 6. Assim foi possível conhecer todas as matróides 3-conexas com e-circunferência 5. Conseguimos também construir as matróides binárias não 3-conexas com e-circunferência 4 e 5. Estes resultados nos fornecem uma completa descrição de todas as matróides binárias não 3-conexas de circunferência 6 e posto pequeno |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T18:29:19Z |
dc.date.available.fl_str_mv |
2014-06-12T18:29:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Souza Araújo, Ademakson; José Machado Soares Lemos, Manoel. Matróides binárias com circunferência 6. 2009. Tese (Doutorado). Programa de Pós-Graduação em Matemática Computacional, Universidade Federal de Pernambuco, Recife, 2009. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/7150 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000tjmp |
identifier_str_mv |
Souza Araújo, Ademakson; José Machado Soares Lemos, Manoel. Matróides binárias com circunferência 6. 2009. Tese (Doutorado). Programa de Pós-Graduação em Matemática Computacional, Universidade Federal de Pernambuco, Recife, 2009. ark:/64986/001300000tjmp |
url |
https://repositorio.ufpe.br/handle/123456789/7150 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/7150/4/arquivo4282_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/7150/1/arquivo4282_1.pdf https://repositorio.ufpe.br/bitstream/123456789/7150/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/7150/3/arquivo4282_1.pdf.txt |
bitstream.checksum.fl_str_mv |
16a073667b34a3a95ec717a6f74423b3 d8e5341810eebc7820e9231598a88d15 8a4605be74aa9ea9d79846c1fba20a33 58b263ff8056a319d9d38de37f235d25 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1814448358319718400 |