Estimação pontual e intervalar em um modelo de regressão beta
Autor(a) principal: | |
---|---|
Data de Publicação: | 2004 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/6573 |
Resumo: | O modelo de regressão beta possui potencialmente aplicabilidade prática, em particular, na modelagem de taxas e proporções. Assim, o cálculo dos vieses dos estimadores dos parâmetros deste modelo torna-se importante, visto que, em geral, para modelos regulares, quanto menores são os tamanhos de amostra, mais viesados são os estimadores de máxima verossimilhança. A obtenção de expressões que permitam calcular os vieses desses estimadores possibilita a obtenção de estimadores corrigidos, que em príncipio são mais precisos que os não corrigidos. O objetivo deste trabalho é fornecer expressões para os vieses de segunda ordem dos estimadores de máxima verossimilhança no modelo de regressão beta proposto por Ferrari & Cribari?Neto (2003). Com a finalidade de reduzir os vieses destes estimadores em amostras finitas, utilizam-se correções de viés obtidas a partir de esquemas analíticos (Cox & Snell,1968; Firth, 1993) e de bootstrap. Deduzimos uma fórmula para o cálculo dos vieses de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros do modelo de regressão beta. Em seguida, fornecemos estimativas corrigidas do tipo corretivo, preventivo e de bootstrap, mostrando numericamente que as estimativas corrigidas de tipo corretivo e de bootstrap apresentam desempenhos superiores em termos de viés e erro médio quadrático `as suas respectivas estimativas de máxima verossimilhança. Apresentamos intervalos de confiança do tipo assintótico, bootstrap percentil e bootstrap BCa para os parâmetros do modelo de regressão beta. A avaliação numérica revelou que os intervalos de tipo percentil para os parâmetros baseados nas estimativas corrigidas apresentam os melhores desempenhos em termos de cobertura, balanceamento e comprimento. Adicionalmente, mostramos que os intervalos de confiança para o parâmetro de precisão são bastante assimétricos, sendo que os intervalos do tipo assintótico baseados nas estimativas de máxima verossimilhança e corrigida corretivamente possuem as melhores coberturas e menores comprimentos |
id |
UFPE_a9fa49de79d6c791e556fc483addd03e |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/6573 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Ospina Martinez, RaydonalLeite Pinto Vasconcellos, Klaus 2014-06-12T18:06:11Z2014-06-12T18:06:11Z2004Ospina Martinez, Raydonal; Leite Pinto Vasconcellos, Klaus. Estimação pontual e intervalar em um modelo de regressão beta. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2004.https://repositorio.ufpe.br/handle/123456789/6573O modelo de regressão beta possui potencialmente aplicabilidade prática, em particular, na modelagem de taxas e proporções. Assim, o cálculo dos vieses dos estimadores dos parâmetros deste modelo torna-se importante, visto que, em geral, para modelos regulares, quanto menores são os tamanhos de amostra, mais viesados são os estimadores de máxima verossimilhança. A obtenção de expressões que permitam calcular os vieses desses estimadores possibilita a obtenção de estimadores corrigidos, que em príncipio são mais precisos que os não corrigidos. O objetivo deste trabalho é fornecer expressões para os vieses de segunda ordem dos estimadores de máxima verossimilhança no modelo de regressão beta proposto por Ferrari & Cribari?Neto (2003). Com a finalidade de reduzir os vieses destes estimadores em amostras finitas, utilizam-se correções de viés obtidas a partir de esquemas analíticos (Cox & Snell,1968; Firth, 1993) e de bootstrap. Deduzimos uma fórmula para o cálculo dos vieses de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros do modelo de regressão beta. Em seguida, fornecemos estimativas corrigidas do tipo corretivo, preventivo e de bootstrap, mostrando numericamente que as estimativas corrigidas de tipo corretivo e de bootstrap apresentam desempenhos superiores em termos de viés e erro médio quadrático `as suas respectivas estimativas de máxima verossimilhança. Apresentamos intervalos de confiança do tipo assintótico, bootstrap percentil e bootstrap BCa para os parâmetros do modelo de regressão beta. A avaliação numérica revelou que os intervalos de tipo percentil para os parâmetros baseados nas estimativas corrigidas apresentam os melhores desempenhos em termos de cobertura, balanceamento e comprimento. Adicionalmente, mostramos que os intervalos de confiança para o parâmetro de precisão são bastante assimétricos, sendo que os intervalos do tipo assintótico baseados nas estimativas de máxima verossimilhança e corrigida corretivamente possuem as melhores coberturas e menores comprimentosConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCorreção de viésRegressão betaVerossimilhançaEstimação pontual e intervalar em um modelo de regressão betainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo7252_1.pdf.jpgarquivo7252_1.pdf.jpgGenerated Thumbnailimage/jpeg1303https://repositorio.ufpe.br/bitstream/123456789/6573/4/arquivo7252_1.pdf.jpgc00ca343065b3ec9a790fce0c453b79aMD54ORIGINALarquivo7252_1.pdfapplication/pdf741462https://repositorio.ufpe.br/bitstream/123456789/6573/1/arquivo7252_1.pdfe43c42f531b9875c740bc855589799daMD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/6573/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo7252_1.pdf.txtarquivo7252_1.pdf.txtExtracted texttext/plain281644https://repositorio.ufpe.br/bitstream/123456789/6573/3/arquivo7252_1.pdf.txt5d4d0cbc3d316b06346860719d48fc5fMD53123456789/65732019-10-25 03:34:33.939oai:repositorio.ufpe.br:123456789/6573Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T06:34:33Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Estimação pontual e intervalar em um modelo de regressão beta |
title |
Estimação pontual e intervalar em um modelo de regressão beta |
spellingShingle |
Estimação pontual e intervalar em um modelo de regressão beta Ospina Martinez, Raydonal Correção de viés Regressão beta Verossimilhança |
title_short |
Estimação pontual e intervalar em um modelo de regressão beta |
title_full |
Estimação pontual e intervalar em um modelo de regressão beta |
title_fullStr |
Estimação pontual e intervalar em um modelo de regressão beta |
title_full_unstemmed |
Estimação pontual e intervalar em um modelo de regressão beta |
title_sort |
Estimação pontual e intervalar em um modelo de regressão beta |
author |
Ospina Martinez, Raydonal |
author_facet |
Ospina Martinez, Raydonal |
author_role |
author |
dc.contributor.author.fl_str_mv |
Ospina Martinez, Raydonal |
dc.contributor.advisor1.fl_str_mv |
Leite Pinto Vasconcellos, Klaus |
contributor_str_mv |
Leite Pinto Vasconcellos, Klaus |
dc.subject.por.fl_str_mv |
Correção de viés Regressão beta Verossimilhança |
topic |
Correção de viés Regressão beta Verossimilhança |
description |
O modelo de regressão beta possui potencialmente aplicabilidade prática, em particular, na modelagem de taxas e proporções. Assim, o cálculo dos vieses dos estimadores dos parâmetros deste modelo torna-se importante, visto que, em geral, para modelos regulares, quanto menores são os tamanhos de amostra, mais viesados são os estimadores de máxima verossimilhança. A obtenção de expressões que permitam calcular os vieses desses estimadores possibilita a obtenção de estimadores corrigidos, que em príncipio são mais precisos que os não corrigidos. O objetivo deste trabalho é fornecer expressões para os vieses de segunda ordem dos estimadores de máxima verossimilhança no modelo de regressão beta proposto por Ferrari & Cribari?Neto (2003). Com a finalidade de reduzir os vieses destes estimadores em amostras finitas, utilizam-se correções de viés obtidas a partir de esquemas analíticos (Cox & Snell,1968; Firth, 1993) e de bootstrap. Deduzimos uma fórmula para o cálculo dos vieses de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros do modelo de regressão beta. Em seguida, fornecemos estimativas corrigidas do tipo corretivo, preventivo e de bootstrap, mostrando numericamente que as estimativas corrigidas de tipo corretivo e de bootstrap apresentam desempenhos superiores em termos de viés e erro médio quadrático `as suas respectivas estimativas de máxima verossimilhança. Apresentamos intervalos de confiança do tipo assintótico, bootstrap percentil e bootstrap BCa para os parâmetros do modelo de regressão beta. A avaliação numérica revelou que os intervalos de tipo percentil para os parâmetros baseados nas estimativas corrigidas apresentam os melhores desempenhos em termos de cobertura, balanceamento e comprimento. Adicionalmente, mostramos que os intervalos de confiança para o parâmetro de precisão são bastante assimétricos, sendo que os intervalos do tipo assintótico baseados nas estimativas de máxima verossimilhança e corrigida corretivamente possuem as melhores coberturas e menores comprimentos |
publishDate |
2004 |
dc.date.issued.fl_str_mv |
2004 |
dc.date.accessioned.fl_str_mv |
2014-06-12T18:06:11Z |
dc.date.available.fl_str_mv |
2014-06-12T18:06:11Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Ospina Martinez, Raydonal; Leite Pinto Vasconcellos, Klaus. Estimação pontual e intervalar em um modelo de regressão beta. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2004. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/6573 |
identifier_str_mv |
Ospina Martinez, Raydonal; Leite Pinto Vasconcellos, Klaus. Estimação pontual e intervalar em um modelo de regressão beta. 2004. Dissertação (Mestrado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2004. |
url |
https://repositorio.ufpe.br/handle/123456789/6573 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/6573/4/arquivo7252_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/6573/1/arquivo7252_1.pdf https://repositorio.ufpe.br/bitstream/123456789/6573/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/6573/3/arquivo7252_1.pdf.txt |
bitstream.checksum.fl_str_mv |
c00ca343065b3ec9a790fce0c453b79a e43c42f531b9875c740bc855589799da 8a4605be74aa9ea9d79846c1fba20a33 5d4d0cbc3d316b06346860719d48fc5f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1823423164973056000 |