Modelos Escondidos de Markov para Classificação de Proteínas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000014dz1 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/2561 |
Resumo: | A Biologia Molecular apresenta-se como uma área da Biologia bastante fértil em aplicações de técnicas computacionais. A estrutura das moléculas de ácidos nucléicos e proteínas, composta de partículas alinhadas ao longo de uma cadeia, permite-lhes serem tratadas computacionalmente como seqüências de símbolos de um alfabeto finito. O estudo das similaridades existentes entre seqüências distintas de proteínas que desempenham a mesma função pode ajudar a traçar caminhos evolucionários comuns e descobrir semelhanças entre diferentes organismos, que podem levar à compreensão de famílias inteiras, contribuindo para a definição de mecanismos gerais que regem as formas de vida na Terra. Modelos Escondidos de Markov HMMs, têm-se apresentado como uma excelente técnica para a comparação de seqüências de proteínas, suportada por uma forte fundamentação matemática. Este processo de modelagem é baseado nas características estatísticas do objeto de estudo, o qual é visto como um processo aleatório parametrizado, cujos parâmetros podem ser determinados de uma maneira bem definida e precisa. No projeto de um HMM, há três problemas fundamentais a serem resolvidos: (1) Avaliação da probabilidade de uma seqüência de observações, dado o HMM; (2) Determinação da melhor seqüência de estados (a mais provável); (3) Ajuste dos parâmetros do modelo, de acordo com a seqüência observada. Neste trabalho é apresentada uma arquitetura de HMM para modelagem de famílias de proteínas, que é implementada com uma técnica de aprendizagem de máquina a qual permite que os parâmetros do modelo, tais como penalidades por remoções, inserções e substituições, sejam aprendidos durante a construção do modelo, sem a introdução de conhecimento prévio. Para aplicar a técnica, foi desenvolvida uma ferramenta para construção de um HMM capaz de classificar seqüências de proteínas. Foram realizados experimentos com três famílias de proteínas, a saber, globinas, proteinoquinases e GTPases. Para cada família, um HMM foi treinado usando um conjunto de seqüências daquela família. Os resultados dos experimentos mostram que a técnica HMM é capaz de explorar informações estatísticas contidas em uma grande quantidade de seqüências de proteínas de uma mesma família. Os HMM s construídos são capazes de distinguir com um alto grau de precisão seqüências membros de seqüências não membros das famílias modeladas |
id |
UFPE_afae76ce0200df006acfd989ebfe344b |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/2561 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Mesquita Brasil Khouri, CátiaSilva Guimarães, Katia 2014-06-12T15:59:16Z2014-06-12T15:59:16Z2002Mesquita Brasil Khouri, Cátia; Silva Guimarães, Katia. Modelos Escondidos de Markov para Classificação de Proteínas. 2002. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2002.https://repositorio.ufpe.br/handle/123456789/2561ark:/64986/0013000014dz1A Biologia Molecular apresenta-se como uma área da Biologia bastante fértil em aplicações de técnicas computacionais. A estrutura das moléculas de ácidos nucléicos e proteínas, composta de partículas alinhadas ao longo de uma cadeia, permite-lhes serem tratadas computacionalmente como seqüências de símbolos de um alfabeto finito. O estudo das similaridades existentes entre seqüências distintas de proteínas que desempenham a mesma função pode ajudar a traçar caminhos evolucionários comuns e descobrir semelhanças entre diferentes organismos, que podem levar à compreensão de famílias inteiras, contribuindo para a definição de mecanismos gerais que regem as formas de vida na Terra. Modelos Escondidos de Markov HMMs, têm-se apresentado como uma excelente técnica para a comparação de seqüências de proteínas, suportada por uma forte fundamentação matemática. Este processo de modelagem é baseado nas características estatísticas do objeto de estudo, o qual é visto como um processo aleatório parametrizado, cujos parâmetros podem ser determinados de uma maneira bem definida e precisa. No projeto de um HMM, há três problemas fundamentais a serem resolvidos: (1) Avaliação da probabilidade de uma seqüência de observações, dado o HMM; (2) Determinação da melhor seqüência de estados (a mais provável); (3) Ajuste dos parâmetros do modelo, de acordo com a seqüência observada. Neste trabalho é apresentada uma arquitetura de HMM para modelagem de famílias de proteínas, que é implementada com uma técnica de aprendizagem de máquina a qual permite que os parâmetros do modelo, tais como penalidades por remoções, inserções e substituições, sejam aprendidos durante a construção do modelo, sem a introdução de conhecimento prévio. Para aplicar a técnica, foi desenvolvida uma ferramenta para construção de um HMM capaz de classificar seqüências de proteínas. Foram realizados experimentos com três famílias de proteínas, a saber, globinas, proteinoquinases e GTPases. Para cada família, um HMM foi treinado usando um conjunto de seqüências daquela família. Os resultados dos experimentos mostram que a técnica HMM é capaz de explorar informações estatísticas contidas em uma grande quantidade de seqüências de proteínas de uma mesma família. Os HMM s construídos são capazes de distinguir com um alto grau de precisão seqüências membros de seqüências não membros das famílias modeladasporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessModelos Escondidos de MarkovDeterminação da melhor seqüência de estadosAjuste dos parâmetros do modeloModelos Escondidos de Markov para Classificação de Proteínasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo4987_1.pdf.jpgarquivo4987_1.pdf.jpgGenerated Thumbnailimage/jpeg1159https://repositorio.ufpe.br/bitstream/123456789/2561/4/arquivo4987_1.pdf.jpgde7e69464faac87c87925fd0147c8c10MD54ORIGINALarquivo4987_1.pdfapplication/pdf3134708https://repositorio.ufpe.br/bitstream/123456789/2561/1/arquivo4987_1.pdfd9f9442a382a92b7f968dc2caeb95891MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/2561/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo4987_1.pdf.txtarquivo4987_1.pdf.txtExtracted texttext/plain207907https://repositorio.ufpe.br/bitstream/123456789/2561/3/arquivo4987_1.pdf.txt2e02c3382b464758243f12d25a4d7cf6MD53123456789/25612019-10-25 12:38:25.487oai:repositorio.ufpe.br:123456789/2561Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:38:25Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Modelos Escondidos de Markov para Classificação de Proteínas |
title |
Modelos Escondidos de Markov para Classificação de Proteínas |
spellingShingle |
Modelos Escondidos de Markov para Classificação de Proteínas Mesquita Brasil Khouri, Cátia Modelos Escondidos de Markov Determinação da melhor seqüência de estados Ajuste dos parâmetros do modelo |
title_short |
Modelos Escondidos de Markov para Classificação de Proteínas |
title_full |
Modelos Escondidos de Markov para Classificação de Proteínas |
title_fullStr |
Modelos Escondidos de Markov para Classificação de Proteínas |
title_full_unstemmed |
Modelos Escondidos de Markov para Classificação de Proteínas |
title_sort |
Modelos Escondidos de Markov para Classificação de Proteínas |
author |
Mesquita Brasil Khouri, Cátia |
author_facet |
Mesquita Brasil Khouri, Cátia |
author_role |
author |
dc.contributor.author.fl_str_mv |
Mesquita Brasil Khouri, Cátia |
dc.contributor.advisor1.fl_str_mv |
Silva Guimarães, Katia |
contributor_str_mv |
Silva Guimarães, Katia |
dc.subject.por.fl_str_mv |
Modelos Escondidos de Markov Determinação da melhor seqüência de estados Ajuste dos parâmetros do modelo |
topic |
Modelos Escondidos de Markov Determinação da melhor seqüência de estados Ajuste dos parâmetros do modelo |
description |
A Biologia Molecular apresenta-se como uma área da Biologia bastante fértil em aplicações de técnicas computacionais. A estrutura das moléculas de ácidos nucléicos e proteínas, composta de partículas alinhadas ao longo de uma cadeia, permite-lhes serem tratadas computacionalmente como seqüências de símbolos de um alfabeto finito. O estudo das similaridades existentes entre seqüências distintas de proteínas que desempenham a mesma função pode ajudar a traçar caminhos evolucionários comuns e descobrir semelhanças entre diferentes organismos, que podem levar à compreensão de famílias inteiras, contribuindo para a definição de mecanismos gerais que regem as formas de vida na Terra. Modelos Escondidos de Markov HMMs, têm-se apresentado como uma excelente técnica para a comparação de seqüências de proteínas, suportada por uma forte fundamentação matemática. Este processo de modelagem é baseado nas características estatísticas do objeto de estudo, o qual é visto como um processo aleatório parametrizado, cujos parâmetros podem ser determinados de uma maneira bem definida e precisa. No projeto de um HMM, há três problemas fundamentais a serem resolvidos: (1) Avaliação da probabilidade de uma seqüência de observações, dado o HMM; (2) Determinação da melhor seqüência de estados (a mais provável); (3) Ajuste dos parâmetros do modelo, de acordo com a seqüência observada. Neste trabalho é apresentada uma arquitetura de HMM para modelagem de famílias de proteínas, que é implementada com uma técnica de aprendizagem de máquina a qual permite que os parâmetros do modelo, tais como penalidades por remoções, inserções e substituições, sejam aprendidos durante a construção do modelo, sem a introdução de conhecimento prévio. Para aplicar a técnica, foi desenvolvida uma ferramenta para construção de um HMM capaz de classificar seqüências de proteínas. Foram realizados experimentos com três famílias de proteínas, a saber, globinas, proteinoquinases e GTPases. Para cada família, um HMM foi treinado usando um conjunto de seqüências daquela família. Os resultados dos experimentos mostram que a técnica HMM é capaz de explorar informações estatísticas contidas em uma grande quantidade de seqüências de proteínas de uma mesma família. Os HMM s construídos são capazes de distinguir com um alto grau de precisão seqüências membros de seqüências não membros das famílias modeladas |
publishDate |
2002 |
dc.date.issued.fl_str_mv |
2002 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:59:16Z |
dc.date.available.fl_str_mv |
2014-06-12T15:59:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Mesquita Brasil Khouri, Cátia; Silva Guimarães, Katia. Modelos Escondidos de Markov para Classificação de Proteínas. 2002. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2002. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/2561 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000014dz1 |
identifier_str_mv |
Mesquita Brasil Khouri, Cátia; Silva Guimarães, Katia. Modelos Escondidos de Markov para Classificação de Proteínas. 2002. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2002. ark:/64986/0013000014dz1 |
url |
https://repositorio.ufpe.br/handle/123456789/2561 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/2561/4/arquivo4987_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/2561/1/arquivo4987_1.pdf https://repositorio.ufpe.br/bitstream/123456789/2561/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/2561/3/arquivo4987_1.pdf.txt |
bitstream.checksum.fl_str_mv |
de7e69464faac87c87925fd0147c8c10 d9f9442a382a92b7f968dc2caeb95891 8a4605be74aa9ea9d79846c1fba20a33 2e02c3382b464758243f12d25a4d7cf6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815173000269398016 |