Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados

Detalhes bibliográficos
Autor(a) principal: Pereira, Luciano de Santana
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000001652
Texto Completo: https://repositorio.ufpe.br/handle/123456789/12402
Resumo: T´ecnicas de aprendizagem de m´aquina baseadas em instˆancias s˜ao utilizadas em v´arias aplicac¸ ˜oes, como, por exemplo, reconhecimento de faces, voz e digitais, na medicina para auxiliar m´edicos na detecc¸ ˜ao de neoplasias, entre outras. Geralmente, essas t´ecnicas s˜ao submetidas a grandes conjuntos de dados, fazendo com que haja necessidade de grande espac¸o em mem´oria para processamento e armazenamento, al´em do elevado custo computacional para a classificac¸ ˜ao. Com o objetivo de minimizar esses problemas, as t´ecnicas de reduc¸ ˜ao de instˆancias buscam reduzir o tamanho do conjunto de dados, escolhendo ou produzindo elementos que consigam represent´a-lo, reduzindo a necessidade de mem´oria para o armazenamento do conjunto de dados, o custo computacional e minimizando a taxa de erro. Existem, atualmente, dois ramos da pesquisa que buscam a reduc¸ ˜ao de instˆancias: a selec¸ ˜ao de instˆancias, que faz a reduc¸ ˜ao escolhendo algumas instˆancias representantes de todo o conjunto de treinamento e as t´ecnicas de gerac¸ ˜ao de prot´otipos que buscam a reduc¸ ˜ao de instˆancias, produzindo novos prot´otipos, a partir de v´arias heur´ısticas, que ir˜ao representar todo o conjunto de treinamento. Esse processo de gerac¸ ˜ao ´e mais demorado que o processo de selec¸ ˜ao. Por´em, observa-se na literatura que as t´ecnicas de gerac¸ ˜ao apresentam melhores resultados que as t´ecnicas de selec¸ ˜ao. A proposta deste trabalho ´e investigar se as t´ecnicas de selec¸ ˜ao podem obter resultados semelhantes `as t´ecnicas de gerac¸ ˜ao. O resultado obtido neste estudo mostra que as t´ecnicas de selec¸ ˜ao existentes podem obter taxas equivalentes `as t´ecnicas de gerac¸ ˜ao na maioria das bases utilizadas nos experimentos, existindo algumas excec¸ ˜oes em que as t´ecnicas de gerac¸ ˜ao obtiveram melhores resultados. Podemos verificar que, na maioria dos casos (83,3%) das bases testadas, os prot´otipos gerados tinham instˆancias muito pr´oximas, no conjunto de treinamento, que poderiam substitu´ı-los, sem a necessidade de gerac¸ ˜ao de prot´otipos, que ´e um processo mais custoso que a selec¸ ˜ao de prot´otipos. Podemos concluir que ´e poss´ıvel desenvolver t´ecnicas de selec¸ ˜ao, que apresentem taxas de erro estatisticamente iguais `as t´ecnicas de gerac¸ ˜ao.
id UFPE_b01aedf1052018314f5dced9a27d3c3c
oai_identifier_str oai:repositorio.ufpe.br:123456789/12402
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Pereira, Luciano de SantanaCavalcanti, George Darmiton da Cunha 2015-03-13T13:10:24Z2015-03-13T13:10:24Z2013-07-17PEREIRA, Luciano de Santana. Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados. Recife, 2013. 75 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013..https://repositorio.ufpe.br/handle/123456789/12402ark:/64986/0013000001652T´ecnicas de aprendizagem de m´aquina baseadas em instˆancias s˜ao utilizadas em v´arias aplicac¸ ˜oes, como, por exemplo, reconhecimento de faces, voz e digitais, na medicina para auxiliar m´edicos na detecc¸ ˜ao de neoplasias, entre outras. Geralmente, essas t´ecnicas s˜ao submetidas a grandes conjuntos de dados, fazendo com que haja necessidade de grande espac¸o em mem´oria para processamento e armazenamento, al´em do elevado custo computacional para a classificac¸ ˜ao. Com o objetivo de minimizar esses problemas, as t´ecnicas de reduc¸ ˜ao de instˆancias buscam reduzir o tamanho do conjunto de dados, escolhendo ou produzindo elementos que consigam represent´a-lo, reduzindo a necessidade de mem´oria para o armazenamento do conjunto de dados, o custo computacional e minimizando a taxa de erro. Existem, atualmente, dois ramos da pesquisa que buscam a reduc¸ ˜ao de instˆancias: a selec¸ ˜ao de instˆancias, que faz a reduc¸ ˜ao escolhendo algumas instˆancias representantes de todo o conjunto de treinamento e as t´ecnicas de gerac¸ ˜ao de prot´otipos que buscam a reduc¸ ˜ao de instˆancias, produzindo novos prot´otipos, a partir de v´arias heur´ısticas, que ir˜ao representar todo o conjunto de treinamento. Esse processo de gerac¸ ˜ao ´e mais demorado que o processo de selec¸ ˜ao. Por´em, observa-se na literatura que as t´ecnicas de gerac¸ ˜ao apresentam melhores resultados que as t´ecnicas de selec¸ ˜ao. A proposta deste trabalho ´e investigar se as t´ecnicas de selec¸ ˜ao podem obter resultados semelhantes `as t´ecnicas de gerac¸ ˜ao. O resultado obtido neste estudo mostra que as t´ecnicas de selec¸ ˜ao existentes podem obter taxas equivalentes `as t´ecnicas de gerac¸ ˜ao na maioria das bases utilizadas nos experimentos, existindo algumas excec¸ ˜oes em que as t´ecnicas de gerac¸ ˜ao obtiveram melhores resultados. Podemos verificar que, na maioria dos casos (83,3%) das bases testadas, os prot´otipos gerados tinham instˆancias muito pr´oximas, no conjunto de treinamento, que poderiam substitu´ı-los, sem a necessidade de gerac¸ ˜ao de prot´otipos, que ´e um processo mais custoso que a selec¸ ˜ao de prot´otipos. Podemos concluir que ´e poss´ıvel desenvolver t´ecnicas de selec¸ ˜ao, que apresentem taxas de erro estatisticamente iguais `as t´ecnicas de gerac¸ ˜ao.porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAprendizagem de maquinaAprendizado supervisionadoSeleção de protótipos,Geração de protótiposRedução de instânciasvizinho mais próximoMetodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDissertaçao Luciano Pereira.pdf.jpgDissertaçao Luciano Pereira.pdf.jpgGenerated Thumbnailimage/jpeg1354https://repositorio.ufpe.br/bitstream/123456789/12402/5/Disserta%c3%a7ao%20Luciano%20Pereira.pdf.jpgf55cfbffeb83bdfe554f280787d217a2MD55ORIGINALDissertaçao Luciano Pereira.pdfDissertaçao Luciano Pereira.pdfapplication/pdf1413296https://repositorio.ufpe.br/bitstream/123456789/12402/1/Disserta%c3%a7ao%20Luciano%20Pereira.pdf608b11e654f960ce7a6787138b9b1bd0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/12402/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/12402/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDissertaçao Luciano Pereira.pdf.txtDissertaçao Luciano Pereira.pdf.txtExtracted texttext/plain162157https://repositorio.ufpe.br/bitstream/123456789/12402/4/Disserta%c3%a7ao%20Luciano%20Pereira.pdf.txt5c2b7b7f55579a70b58ee970e9e2edf7MD54123456789/124022019-10-25 17:17:57.31oai:repositorio.ufpe.br:123456789/12402TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T20:17:57Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados
title Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados
spellingShingle Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados
Pereira, Luciano de Santana
Aprendizagem de maquina
Aprendizado supervisionado
Seleção de protótipos,
Geração de protótipos
Redução de instâncias
vizinho mais próximo
title_short Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados
title_full Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados
title_fullStr Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados
title_full_unstemmed Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados
title_sort Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados
author Pereira, Luciano de Santana
author_facet Pereira, Luciano de Santana
author_role author
dc.contributor.author.fl_str_mv Pereira, Luciano de Santana
dc.contributor.advisor1.fl_str_mv Cavalcanti, George Darmiton da Cunha
contributor_str_mv Cavalcanti, George Darmiton da Cunha
dc.subject.por.fl_str_mv Aprendizagem de maquina
Aprendizado supervisionado
Seleção de protótipos,
Geração de protótipos
Redução de instâncias
vizinho mais próximo
topic Aprendizagem de maquina
Aprendizado supervisionado
Seleção de protótipos,
Geração de protótipos
Redução de instâncias
vizinho mais próximo
description T´ecnicas de aprendizagem de m´aquina baseadas em instˆancias s˜ao utilizadas em v´arias aplicac¸ ˜oes, como, por exemplo, reconhecimento de faces, voz e digitais, na medicina para auxiliar m´edicos na detecc¸ ˜ao de neoplasias, entre outras. Geralmente, essas t´ecnicas s˜ao submetidas a grandes conjuntos de dados, fazendo com que haja necessidade de grande espac¸o em mem´oria para processamento e armazenamento, al´em do elevado custo computacional para a classificac¸ ˜ao. Com o objetivo de minimizar esses problemas, as t´ecnicas de reduc¸ ˜ao de instˆancias buscam reduzir o tamanho do conjunto de dados, escolhendo ou produzindo elementos que consigam represent´a-lo, reduzindo a necessidade de mem´oria para o armazenamento do conjunto de dados, o custo computacional e minimizando a taxa de erro. Existem, atualmente, dois ramos da pesquisa que buscam a reduc¸ ˜ao de instˆancias: a selec¸ ˜ao de instˆancias, que faz a reduc¸ ˜ao escolhendo algumas instˆancias representantes de todo o conjunto de treinamento e as t´ecnicas de gerac¸ ˜ao de prot´otipos que buscam a reduc¸ ˜ao de instˆancias, produzindo novos prot´otipos, a partir de v´arias heur´ısticas, que ir˜ao representar todo o conjunto de treinamento. Esse processo de gerac¸ ˜ao ´e mais demorado que o processo de selec¸ ˜ao. Por´em, observa-se na literatura que as t´ecnicas de gerac¸ ˜ao apresentam melhores resultados que as t´ecnicas de selec¸ ˜ao. A proposta deste trabalho ´e investigar se as t´ecnicas de selec¸ ˜ao podem obter resultados semelhantes `as t´ecnicas de gerac¸ ˜ao. O resultado obtido neste estudo mostra que as t´ecnicas de selec¸ ˜ao existentes podem obter taxas equivalentes `as t´ecnicas de gerac¸ ˜ao na maioria das bases utilizadas nos experimentos, existindo algumas excec¸ ˜oes em que as t´ecnicas de gerac¸ ˜ao obtiveram melhores resultados. Podemos verificar que, na maioria dos casos (83,3%) das bases testadas, os prot´otipos gerados tinham instˆancias muito pr´oximas, no conjunto de treinamento, que poderiam substitu´ı-los, sem a necessidade de gerac¸ ˜ao de prot´otipos, que ´e um processo mais custoso que a selec¸ ˜ao de prot´otipos. Podemos concluir que ´e poss´ıvel desenvolver t´ecnicas de selec¸ ˜ao, que apresentem taxas de erro estatisticamente iguais `as t´ecnicas de gerac¸ ˜ao.
publishDate 2013
dc.date.issued.fl_str_mv 2013-07-17
dc.date.accessioned.fl_str_mv 2015-03-13T13:10:24Z
dc.date.available.fl_str_mv 2015-03-13T13:10:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEREIRA, Luciano de Santana. Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados. Recife, 2013. 75 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013..
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/12402
dc.identifier.dark.fl_str_mv ark:/64986/0013000001652
identifier_str_mv PEREIRA, Luciano de Santana. Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados. Recife, 2013. 75 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013..
ark:/64986/0013000001652
url https://repositorio.ufpe.br/handle/123456789/12402
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/12402/5/Disserta%c3%a7ao%20Luciano%20Pereira.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/12402/1/Disserta%c3%a7ao%20Luciano%20Pereira.pdf
https://repositorio.ufpe.br/bitstream/123456789/12402/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/12402/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/12402/4/Disserta%c3%a7ao%20Luciano%20Pereira.pdf.txt
bitstream.checksum.fl_str_mv f55cfbffeb83bdfe554f280787d217a2
608b11e654f960ce7a6787138b9b1bd0
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
5c2b7b7f55579a70b58ee970e9e2edf7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172687886024704