Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000rfqp |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/7100 |
Resumo: | Bixby e Cunningham relacionaram graficidade de matroides binárias 3-conexas e cocircuitos não separadores, generalizando um critério de planaridade de grafos 3-conexos de Tutte. Lemos estudou o conjunto de cocircuitos não-separadores que evita um elemento de uma matroide binária 3-conexa e conseguiu outra caracterização: M é gráfica se e só se cada elemento de M evita exatamente r (M)¡1 cocircuitos não separadores. Aqui estudamos o conjunto Y (M), dessas obstruções para graficidade, formado pelos elementos de M que evitam no mínimo r (M) cocircuitos não-separadores. Mostramos que, numa matroide binária 3-conexa existem 3 circuitos contidos em Y (M), cada qual não contido na união dos outros dois. Isso implica numa generalização do resultado de Lemos. No caso em que M não possui menor M¤(K000 3,3) ou M não é regular, conseguimos resultado muito melhor: jE(M)¡Y (M)j · 1. A demonstração desses resultados se baseia numa extensão de alguns resultados de Whittle a respeito demenores de matroide 3-conexas, que também são desenvolvido aqui: Seja M uma matroide binária e 3-conexa com um menor 3-conexo N. Suponha que r (M) ¸ r (N)Å3. Então existe um 3-coindependente I ¤ de M tal que co(M\e) é 3-conexa com menor isomorfo a N para todo e 2 I ¤. No mesmo capítulo desse teorema mostramos ainda uma versão para grafos que, porém, não se extende para matroides binárias |
id |
UFPE_b3728b1f0a4f9a62c8516a7ae9b34146 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/7100 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Paulo Costalonga, JoãoJosé Machado Soares Lemos, Manoel 2014-06-12T18:28:59Z2014-06-12T18:28:59Z2011-01-31Paulo Costalonga, João; José Machado Soares Lemos, Manoel. Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias. 2011. Tese (Doutorado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/7100ark:/64986/001300000rfqpBixby e Cunningham relacionaram graficidade de matroides binárias 3-conexas e cocircuitos não separadores, generalizando um critério de planaridade de grafos 3-conexos de Tutte. Lemos estudou o conjunto de cocircuitos não-separadores que evita um elemento de uma matroide binária 3-conexa e conseguiu outra caracterização: M é gráfica se e só se cada elemento de M evita exatamente r (M)¡1 cocircuitos não separadores. Aqui estudamos o conjunto Y (M), dessas obstruções para graficidade, formado pelos elementos de M que evitam no mínimo r (M) cocircuitos não-separadores. Mostramos que, numa matroide binária 3-conexa existem 3 circuitos contidos em Y (M), cada qual não contido na união dos outros dois. Isso implica numa generalização do resultado de Lemos. No caso em que M não possui menor M¤(K000 3,3) ou M não é regular, conseguimos resultado muito melhor: jE(M)¡Y (M)j · 1. A demonstração desses resultados se baseia numa extensão de alguns resultados de Whittle a respeito demenores de matroide 3-conexas, que também são desenvolvido aqui: Seja M uma matroide binária e 3-conexa com um menor 3-conexo N. Suponha que r (M) ¸ r (N)Å3. Então existe um 3-coindependente I ¤ de M tal que co(M\e) é 3-conexa com menor isomorfo a N para todo e 2 I ¤. No mesmo capítulo desse teorema mostramos ainda uma versão para grafos que, porém, não se extende para matroides bináriasConselho Nacional de Desenvolvimento Científico e TecnológicoporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMatroidesTeoria dos grafosCocircuitos não-separadores que evitam um elemento e graficidade em matroides bináriasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo648_1.pdf.jpgarquivo648_1.pdf.jpgGenerated Thumbnailimage/jpeg1456https://repositorio.ufpe.br/bitstream/123456789/7100/4/arquivo648_1.pdf.jpg268955010401c4e498604eb9108668d8MD54ORIGINALarquivo648_1.pdfapplication/pdf827994https://repositorio.ufpe.br/bitstream/123456789/7100/1/arquivo648_1.pdf5bd18eefcbed6a0d647716cdc47627b9MD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/7100/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo648_1.pdf.txtarquivo648_1.pdf.txtExtracted texttext/plain145522https://repositorio.ufpe.br/bitstream/123456789/7100/3/arquivo648_1.pdf.txt2994443a1830ed86c364394d9f3f2364MD53123456789/71002019-10-25 14:33:16.608oai:repositorio.ufpe.br:123456789/7100Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T17:33:16Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias |
title |
Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias |
spellingShingle |
Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias Paulo Costalonga, João Matroides Teoria dos grafos |
title_short |
Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias |
title_full |
Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias |
title_fullStr |
Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias |
title_full_unstemmed |
Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias |
title_sort |
Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias |
author |
Paulo Costalonga, João |
author_facet |
Paulo Costalonga, João |
author_role |
author |
dc.contributor.author.fl_str_mv |
Paulo Costalonga, João |
dc.contributor.advisor1.fl_str_mv |
José Machado Soares Lemos, Manoel |
contributor_str_mv |
José Machado Soares Lemos, Manoel |
dc.subject.por.fl_str_mv |
Matroides Teoria dos grafos |
topic |
Matroides Teoria dos grafos |
description |
Bixby e Cunningham relacionaram graficidade de matroides binárias 3-conexas e cocircuitos não separadores, generalizando um critério de planaridade de grafos 3-conexos de Tutte. Lemos estudou o conjunto de cocircuitos não-separadores que evita um elemento de uma matroide binária 3-conexa e conseguiu outra caracterização: M é gráfica se e só se cada elemento de M evita exatamente r (M)¡1 cocircuitos não separadores. Aqui estudamos o conjunto Y (M), dessas obstruções para graficidade, formado pelos elementos de M que evitam no mínimo r (M) cocircuitos não-separadores. Mostramos que, numa matroide binária 3-conexa existem 3 circuitos contidos em Y (M), cada qual não contido na união dos outros dois. Isso implica numa generalização do resultado de Lemos. No caso em que M não possui menor M¤(K000 3,3) ou M não é regular, conseguimos resultado muito melhor: jE(M)¡Y (M)j · 1. A demonstração desses resultados se baseia numa extensão de alguns resultados de Whittle a respeito demenores de matroide 3-conexas, que também são desenvolvido aqui: Seja M uma matroide binária e 3-conexa com um menor 3-conexo N. Suponha que r (M) ¸ r (N)Å3. Então existe um 3-coindependente I ¤ de M tal que co(M\e) é 3-conexa com menor isomorfo a N para todo e 2 I ¤. No mesmo capítulo desse teorema mostramos ainda uma versão para grafos que, porém, não se extende para matroides binárias |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T18:28:59Z |
dc.date.available.fl_str_mv |
2014-06-12T18:28:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Paulo Costalonga, João; José Machado Soares Lemos, Manoel. Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias. 2011. Tese (Doutorado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2011. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/7100 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000rfqp |
identifier_str_mv |
Paulo Costalonga, João; José Machado Soares Lemos, Manoel. Cocircuitos não-separadores que evitam um elemento e graficidade em matroides binárias. 2011. Tese (Doutorado). Programa de Pós-Graduação em Matemática, Universidade Federal de Pernambuco, Recife, 2011. ark:/64986/001300000rfqp |
url |
https://repositorio.ufpe.br/handle/123456789/7100 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/7100/4/arquivo648_1.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/7100/1/arquivo648_1.pdf https://repositorio.ufpe.br/bitstream/123456789/7100/2/license.txt https://repositorio.ufpe.br/bitstream/123456789/7100/3/arquivo648_1.pdf.txt |
bitstream.checksum.fl_str_mv |
268955010401c4e498604eb9108668d8 5bd18eefcbed6a0d647716cdc47627b9 8a4605be74aa9ea9d79846c1fba20a33 2994443a1830ed86c364394d9f3f2364 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172895352029184 |