Detection and inferences in non-gaussian signals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000002xm0 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/37775 |
Resumo: | Signal detection is a fundamental task in the field of signal and image processing, being pivotal for decision whether a signal is present or identify the different land cover type in synthetic aperture radar (SAR) images. Over the years, detection schemes have been developed assuming the Gaussian distribution. However, in the real world, most of signals are non-Gaussian, and the Gaussianity assumption may not be enough to model several practical contexts. In particular, quantized discrete-time sampled data and amplitude values of a SAR image pixels constitute clear examples of non-Gaussian data. Thus, in this thesis, we derived tools for non-Gaussian signals, such as (i) a new regression model based on the Rayleigh distribution; (ii) bias-adjusted estimators for the Rayleigh regression model parameters; (iii) a new two-dimensional autoregressive moving average model based on the Rayleigh distribution; (iv) a new time series model assuming the beta binomial distribution; and (v) the use of a stack of SAR images to obtain a ground scene prediction (GSP) image. The proposed Rayleigh regression model was applied in detection schemes of land cover type in SAR images and the obtained results were compared to the measurements from Gaussian-, Gamma-, and Weibull-based regression models. The Rayleigh regression model was the only model that could detect the difference among the three tested regions. The two-dimensional Rayleigh autoregressive moving average model were applied to detect changes in SAR images. For comparison purposes, we also obtained the detection results based on the two-dimensional Gaussian model. The proposed method detected 24 in a total of 25 military vehicles, while the Gaussian-based scheme detected only 16 military vehicles. The derived beta binomial autoregressive moving average model was employed in nonrandom signals detection showing a higher probability of detection and a lower probability of false alarm in comparison to the traditional Gaussian based methods. The obtained GPS image based on the median method was considered in a change detection algorithm displaying a probability of detection of 97% and a false alarm rate of 0:11=km², when considering military vehicles concealed in a forest. |
id |
UFPE_b3afeb765f9dd520e829fa1d9d84e6a7 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/37775 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
PALM, Bruna Gregoryhttp://lattes.cnpq.br/0810172189372168http://lattes.cnpq.br/7413544381333504http://lattes.cnpq.br/9904863693302949CINTRA, Renato José de SobralBAYER, Fábio Mariano2020-09-01T01:44:19Z2020-09-01T01:44:19Z2020-02-19PALM, Bruna Gregory. Detection and inferences in non-gaussian signals. 2020. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/37775ark:/64986/0013000002xm0Signal detection is a fundamental task in the field of signal and image processing, being pivotal for decision whether a signal is present or identify the different land cover type in synthetic aperture radar (SAR) images. Over the years, detection schemes have been developed assuming the Gaussian distribution. However, in the real world, most of signals are non-Gaussian, and the Gaussianity assumption may not be enough to model several practical contexts. In particular, quantized discrete-time sampled data and amplitude values of a SAR image pixels constitute clear examples of non-Gaussian data. Thus, in this thesis, we derived tools for non-Gaussian signals, such as (i) a new regression model based on the Rayleigh distribution; (ii) bias-adjusted estimators for the Rayleigh regression model parameters; (iii) a new two-dimensional autoregressive moving average model based on the Rayleigh distribution; (iv) a new time series model assuming the beta binomial distribution; and (v) the use of a stack of SAR images to obtain a ground scene prediction (GSP) image. The proposed Rayleigh regression model was applied in detection schemes of land cover type in SAR images and the obtained results were compared to the measurements from Gaussian-, Gamma-, and Weibull-based regression models. The Rayleigh regression model was the only model that could detect the difference among the three tested regions. The two-dimensional Rayleigh autoregressive moving average model were applied to detect changes in SAR images. For comparison purposes, we also obtained the detection results based on the two-dimensional Gaussian model. The proposed method detected 24 in a total of 25 military vehicles, while the Gaussian-based scheme detected only 16 military vehicles. The derived beta binomial autoregressive moving average model was employed in nonrandom signals detection showing a higher probability of detection and a lower probability of false alarm in comparison to the traditional Gaussian based methods. The obtained GPS image based on the median method was considered in a change detection algorithm displaying a probability of detection of 97% and a false alarm rate of 0:11=km², when considering military vehicles concealed in a forest.CAPESm processamento de sinais e de imagens, detecção é um problema amplamente discutido na literatura, seja para detectar a presença de um sinal ou para identificar o tipo de solo em uma imagem de radar de abertura sintética (SAR). Ao longo dos anos, os métodos de detecção foram desenvolvidos assumindo distribuição gaussiana. Entretanto, em situações reais, os sinais são não gaussianos. Dois típicos exemplos de sinais tipicamente não gaussianos são os sinais digitais e os valores de amplitude em uma imagem SAR. Desta forma, na presente tese, são derivadas ferramentas para sinais não gaussianos, tais como: (i) um novo modelo de regressão baseado na distribuição Rayleigh; (ii) estimadores corrigidos para os parâmetros do modelo de regressão Rayleigh proposto; (iii) um novo modelo autorregressivo de médias moveis bidimensional baseado na distribuição Rayleigh; (iv) um novo modelo de séries temporais assumindo a distribuição beta binomial e (v) o uso de um pacote de images SAR para obter uma previsão sobre o verdadeiro terreno das imagens. O modelo de regressão proposto foi considerado em detecção do tipo de solo em images SAR e os resultados obtidos foram comparados com os modelos baseados nas distribuições gaussiana, gama e Weibull. O modelo de regressão Rayleigh foi o único modelo capaz de detectar diferença no tipo de solo das três áreas testadas. O modelo bidimensional proposto foi empregado na detecção de mudança em images SAR, e os resultados de detecção baseados no modelo bidimensional Gaussiano foram utilizados como critério de comparação. O modelo proposto detectou 24 dos 25 veículos militares presentes na imagem SAR, enquanto que o modelo Gaussiano detectou apenas 16 alvos. Ainda, o modelo beta binomial autorregressivo de média móveis derivado foi empregado em detecção de sinais não aleatórios apresentando maiores valores de probabilidade de detecção e menos taxas de falso alarme em comparação aos tradicionais métodos de detecção baseados na distribuição Gaussiana. Finalmente, a imagem predita baseada no método da mediana obtida considerando um pacote de imagens SAR foi utilizada em um algoritmo de detecção de mudanças apresentando probabilidade de detecção de veículos militares de 97% e taxa de falso alarme de 0:11=km².porUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessDetecção de mudançasEstimadores pontuais corrigidosModelos de regressãoImagens SARDetection and inferences in non-gaussian signalsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/37775/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/37775/3/license.txtbd573a5ca8288eb7272482765f819534MD53ORIGINALTESE Bruna Gregory Palm.pdfTESE Bruna Gregory Palm.pdfapplication/pdf4177954https://repositorio.ufpe.br/bitstream/123456789/37775/1/TESE%20Bruna%20Gregory%20Palm.pdf4f5eb615c317534802db024ecb83edd6MD51TEXTTESE Bruna Gregory Palm.pdf.txtTESE Bruna Gregory Palm.pdf.txtExtracted texttext/plain241016https://repositorio.ufpe.br/bitstream/123456789/37775/4/TESE%20Bruna%20Gregory%20Palm.pdf.txt6f78fd336e8ecac6a63afe2f5531a391MD54THUMBNAILTESE Bruna Gregory Palm.pdf.jpgTESE Bruna Gregory Palm.pdf.jpgGenerated Thumbnailimage/jpeg1282https://repositorio.ufpe.br/bitstream/123456789/37775/5/TESE%20Bruna%20Gregory%20Palm.pdf.jpg5c5f5b05d6f02a92ee8218be6889105bMD55123456789/377752020-09-01 02:10:17.478oai:repositorio.ufpe.br:123456789/37775TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-09-01T05:10:17Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Detection and inferences in non-gaussian signals |
title |
Detection and inferences in non-gaussian signals |
spellingShingle |
Detection and inferences in non-gaussian signals PALM, Bruna Gregory Detecção de mudanças Estimadores pontuais corrigidos Modelos de regressão Imagens SAR |
title_short |
Detection and inferences in non-gaussian signals |
title_full |
Detection and inferences in non-gaussian signals |
title_fullStr |
Detection and inferences in non-gaussian signals |
title_full_unstemmed |
Detection and inferences in non-gaussian signals |
title_sort |
Detection and inferences in non-gaussian signals |
author |
PALM, Bruna Gregory |
author_facet |
PALM, Bruna Gregory |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0810172189372168 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7413544381333504 |
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9904863693302949 |
dc.contributor.author.fl_str_mv |
PALM, Bruna Gregory |
dc.contributor.advisor1.fl_str_mv |
CINTRA, Renato José de Sobral |
dc.contributor.advisor-co1.fl_str_mv |
BAYER, Fábio Mariano |
contributor_str_mv |
CINTRA, Renato José de Sobral BAYER, Fábio Mariano |
dc.subject.por.fl_str_mv |
Detecção de mudanças Estimadores pontuais corrigidos Modelos de regressão Imagens SAR |
topic |
Detecção de mudanças Estimadores pontuais corrigidos Modelos de regressão Imagens SAR |
description |
Signal detection is a fundamental task in the field of signal and image processing, being pivotal for decision whether a signal is present or identify the different land cover type in synthetic aperture radar (SAR) images. Over the years, detection schemes have been developed assuming the Gaussian distribution. However, in the real world, most of signals are non-Gaussian, and the Gaussianity assumption may not be enough to model several practical contexts. In particular, quantized discrete-time sampled data and amplitude values of a SAR image pixels constitute clear examples of non-Gaussian data. Thus, in this thesis, we derived tools for non-Gaussian signals, such as (i) a new regression model based on the Rayleigh distribution; (ii) bias-adjusted estimators for the Rayleigh regression model parameters; (iii) a new two-dimensional autoregressive moving average model based on the Rayleigh distribution; (iv) a new time series model assuming the beta binomial distribution; and (v) the use of a stack of SAR images to obtain a ground scene prediction (GSP) image. The proposed Rayleigh regression model was applied in detection schemes of land cover type in SAR images and the obtained results were compared to the measurements from Gaussian-, Gamma-, and Weibull-based regression models. The Rayleigh regression model was the only model that could detect the difference among the three tested regions. The two-dimensional Rayleigh autoregressive moving average model were applied to detect changes in SAR images. For comparison purposes, we also obtained the detection results based on the two-dimensional Gaussian model. The proposed method detected 24 in a total of 25 military vehicles, while the Gaussian-based scheme detected only 16 military vehicles. The derived beta binomial autoregressive moving average model was employed in nonrandom signals detection showing a higher probability of detection and a lower probability of false alarm in comparison to the traditional Gaussian based methods. The obtained GPS image based on the median method was considered in a change detection algorithm displaying a probability of detection of 97% and a false alarm rate of 0:11=km², when considering military vehicles concealed in a forest. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-09-01T01:44:19Z |
dc.date.available.fl_str_mv |
2020-09-01T01:44:19Z |
dc.date.issued.fl_str_mv |
2020-02-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PALM, Bruna Gregory. Detection and inferences in non-gaussian signals. 2020. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2020. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/37775 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000002xm0 |
identifier_str_mv |
PALM, Bruna Gregory. Detection and inferences in non-gaussian signals. 2020. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2020. ark:/64986/0013000002xm0 |
url |
https://repositorio.ufpe.br/handle/123456789/37775 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Estatistica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/37775/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/37775/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/37775/1/TESE%20Bruna%20Gregory%20Palm.pdf https://repositorio.ufpe.br/bitstream/123456789/37775/4/TESE%20Bruna%20Gregory%20Palm.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/37775/5/TESE%20Bruna%20Gregory%20Palm.pdf.jpg |
bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 bd573a5ca8288eb7272482765f819534 4f5eb615c317534802db024ecb83edd6 6f78fd336e8ecac6a63afe2f5531a391 5c5f5b05d6f02a92ee8218be6889105b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172704793264128 |