Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água

Detalhes bibliográficos
Autor(a) principal: Pimentel Marques, Luciana
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000zht1
Texto Completo: https://repositorio.ufpe.br/handle/123456789/6576
Resumo: Os recursos hídricos vem sendo ameaçados por diversas atividades antrópicas, o que tem levado a comunidade científica a se preocupar em elaborar e discutir metodologias de se avaliar a qualidade dessas águas, quer sejam de forma físico-química ou biológica. Uma das principais ameaças ao meio ambiente é o processo de eutrofização, que é o aumento da concentração de nutrientes, como por exemplo, nitrogênio e fósforo, nos ecossistemas aquáticos. Os avanços tecnológicos computacionais permitiram que a modelagem matemática passasse a desempenhar um importante papel nos estudos de tratamento de dados de Química Ambiental, em especial de Qualidade da Água. Este fato se deve a capacidade da modelagem encarar os processos hidrológicos, físicos, químicos e biológicos de forma simplificada e prática, ainda que sejam complexos. A modelagem empírica utiliza unicamente dados experimentais, surgindo como alternativa a essa complexidade e as técnicas de sistemas inteligentes (as Redes Neurais Artificiais- RNAs) e de análise multivariada (Análise de Componentes Principais-ACP), apresentaram-se atraentes para esta finalilidade. Visando a otimização, diminuindo os custos do processo e o tempo de resposta do monitoramento, neste trabalho foram desenvolvidas estratégias e ferramentas computacionais para a utilização de redes neurais e estatística multivariada na modelagem da qualidade da água utilizando a clorofila-a como parâmetro de avaliação para os dados do Reservatório da Marcela, em Sergipe, e reservatórios de seis bacias de Pernambuco, disponíveis no Laboratório de Engenharia Ambiental e da Qualidade (LEAQ) da Universidade Federal de Pernambuco (UFPE). Foram utilizadas na modelagem redes neurais do tipo Perceptron Multicamadas (MLP) e Funções de Base Radial (RBF), com e sem a ACP, que através da transformação das variáveis de entrada em variáveis linearmente independentes, melhoraria a eficiência das RNAs, e realizados 3 testes. O resultado do primeiro teste, com os dados do reservatório Marcela-SE, foi melhor em relação aos demais, pois possui mais parâmetros ambientais que influenciam a inferência da clorofila-a, já no terceiro teste o resultado para a utilização das redes não foram tão satisfatórios, uma vez que no agrupamento dos parâmetros em comum, parâmetros importantes a inferência foram desprezados. No primeiro teste a rede RBF com ACP, foi a melhor para representar a inferência da clorofila-a, porém no segundo teste, com os dados de reservatórios em Bacias de Pernambuco, foi a rede MLP com ACP quem melhor determinou. Este resultado mostra a independência de relação entre o fenômeno a ser tratado, pois as redes neurais são conhecidas como modelo caixa preta, assim como a independência do conjuntos de dados e o tipo de rede. Já no terceiro teste, com os dados dos outros testes juntos, apesar dos resultados não serem satisfatórios para os dados dos reservatórios, a utilização das redes neurais não pode ser comprometida, uma vez que os dados obtidos para este teste não apresentaram homogeneidade, este fato pôde ser observado através da técnica de ACP, onde verificou-se 2 grupos distintos de dados. A ferramenta computacional construída mostrou ser eficiente na aplicação das redes neurais e análise de componentes principais, assim como as interfaces construídas se mostraram realmente amigáveis
id UFPE_bf70cb1bee1fc78ee35f7c7d6f6dc47f
oai_identifier_str oai:repositorio.ufpe.br:123456789/6576
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Pimentel Marques, LucianaLins da Silva, Valdinete 2014-06-12T18:06:12Z2014-06-12T18:06:12Z2011-01-31Pimentel Marques, Luciana; Lins da Silva, Valdinete. Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/6576ark:/64986/001300000zht1Os recursos hídricos vem sendo ameaçados por diversas atividades antrópicas, o que tem levado a comunidade científica a se preocupar em elaborar e discutir metodologias de se avaliar a qualidade dessas águas, quer sejam de forma físico-química ou biológica. Uma das principais ameaças ao meio ambiente é o processo de eutrofização, que é o aumento da concentração de nutrientes, como por exemplo, nitrogênio e fósforo, nos ecossistemas aquáticos. Os avanços tecnológicos computacionais permitiram que a modelagem matemática passasse a desempenhar um importante papel nos estudos de tratamento de dados de Química Ambiental, em especial de Qualidade da Água. Este fato se deve a capacidade da modelagem encarar os processos hidrológicos, físicos, químicos e biológicos de forma simplificada e prática, ainda que sejam complexos. A modelagem empírica utiliza unicamente dados experimentais, surgindo como alternativa a essa complexidade e as técnicas de sistemas inteligentes (as Redes Neurais Artificiais- RNAs) e de análise multivariada (Análise de Componentes Principais-ACP), apresentaram-se atraentes para esta finalilidade. Visando a otimização, diminuindo os custos do processo e o tempo de resposta do monitoramento, neste trabalho foram desenvolvidas estratégias e ferramentas computacionais para a utilização de redes neurais e estatística multivariada na modelagem da qualidade da água utilizando a clorofila-a como parâmetro de avaliação para os dados do Reservatório da Marcela, em Sergipe, e reservatórios de seis bacias de Pernambuco, disponíveis no Laboratório de Engenharia Ambiental e da Qualidade (LEAQ) da Universidade Federal de Pernambuco (UFPE). Foram utilizadas na modelagem redes neurais do tipo Perceptron Multicamadas (MLP) e Funções de Base Radial (RBF), com e sem a ACP, que através da transformação das variáveis de entrada em variáveis linearmente independentes, melhoraria a eficiência das RNAs, e realizados 3 testes. O resultado do primeiro teste, com os dados do reservatório Marcela-SE, foi melhor em relação aos demais, pois possui mais parâmetros ambientais que influenciam a inferência da clorofila-a, já no terceiro teste o resultado para a utilização das redes não foram tão satisfatórios, uma vez que no agrupamento dos parâmetros em comum, parâmetros importantes a inferência foram desprezados. No primeiro teste a rede RBF com ACP, foi a melhor para representar a inferência da clorofila-a, porém no segundo teste, com os dados de reservatórios em Bacias de Pernambuco, foi a rede MLP com ACP quem melhor determinou. Este resultado mostra a independência de relação entre o fenômeno a ser tratado, pois as redes neurais são conhecidas como modelo caixa preta, assim como a independência do conjuntos de dados e o tipo de rede. Já no terceiro teste, com os dados dos outros testes juntos, apesar dos resultados não serem satisfatórios para os dados dos reservatórios, a utilização das redes neurais não pode ser comprometida, uma vez que os dados obtidos para este teste não apresentaram homogeneidade, este fato pôde ser observado através da técnica de ACP, onde verificou-se 2 grupos distintos de dados. A ferramenta computacional construída mostrou ser eficiente na aplicação das redes neurais e análise de componentes principais, assim como as interfaces construídas se mostraram realmente amigáveisCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRedes neurais artificiaisAnálise de componentes principaisQualidade da água.Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Águainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILarquivo7163_1.pdf.jpgarquivo7163_1.pdf.jpgGenerated Thumbnailimage/jpeg2017https://repositorio.ufpe.br/bitstream/123456789/6576/4/arquivo7163_1.pdf.jpg302ab8b26113c0d31d847a9916f685deMD54ORIGINALarquivo7163_1.pdfapplication/pdf2363182https://repositorio.ufpe.br/bitstream/123456789/6576/1/arquivo7163_1.pdfe6884bcbe3ed945c11ac77e0587a427aMD51LICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/6576/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTarquivo7163_1.pdf.txtarquivo7163_1.pdf.txtExtracted texttext/plain162457https://repositorio.ufpe.br/bitstream/123456789/6576/3/arquivo7163_1.pdf.txt866eb6a8d042a416f85777bb6036566eMD53123456789/65762019-10-25 12:04:25.554oai:repositorio.ufpe.br:123456789/6576Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T15:04:25Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água
title Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água
spellingShingle Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água
Pimentel Marques, Luciana
Redes neurais artificiais
Análise de componentes principais
Qualidade da água.
title_short Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água
title_full Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água
title_fullStr Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água
title_full_unstemmed Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água
title_sort Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água
author Pimentel Marques, Luciana
author_facet Pimentel Marques, Luciana
author_role author
dc.contributor.author.fl_str_mv Pimentel Marques, Luciana
dc.contributor.advisor1.fl_str_mv Lins da Silva, Valdinete
contributor_str_mv Lins da Silva, Valdinete
dc.subject.por.fl_str_mv Redes neurais artificiais
Análise de componentes principais
Qualidade da água.
topic Redes neurais artificiais
Análise de componentes principais
Qualidade da água.
description Os recursos hídricos vem sendo ameaçados por diversas atividades antrópicas, o que tem levado a comunidade científica a se preocupar em elaborar e discutir metodologias de se avaliar a qualidade dessas águas, quer sejam de forma físico-química ou biológica. Uma das principais ameaças ao meio ambiente é o processo de eutrofização, que é o aumento da concentração de nutrientes, como por exemplo, nitrogênio e fósforo, nos ecossistemas aquáticos. Os avanços tecnológicos computacionais permitiram que a modelagem matemática passasse a desempenhar um importante papel nos estudos de tratamento de dados de Química Ambiental, em especial de Qualidade da Água. Este fato se deve a capacidade da modelagem encarar os processos hidrológicos, físicos, químicos e biológicos de forma simplificada e prática, ainda que sejam complexos. A modelagem empírica utiliza unicamente dados experimentais, surgindo como alternativa a essa complexidade e as técnicas de sistemas inteligentes (as Redes Neurais Artificiais- RNAs) e de análise multivariada (Análise de Componentes Principais-ACP), apresentaram-se atraentes para esta finalilidade. Visando a otimização, diminuindo os custos do processo e o tempo de resposta do monitoramento, neste trabalho foram desenvolvidas estratégias e ferramentas computacionais para a utilização de redes neurais e estatística multivariada na modelagem da qualidade da água utilizando a clorofila-a como parâmetro de avaliação para os dados do Reservatório da Marcela, em Sergipe, e reservatórios de seis bacias de Pernambuco, disponíveis no Laboratório de Engenharia Ambiental e da Qualidade (LEAQ) da Universidade Federal de Pernambuco (UFPE). Foram utilizadas na modelagem redes neurais do tipo Perceptron Multicamadas (MLP) e Funções de Base Radial (RBF), com e sem a ACP, que através da transformação das variáveis de entrada em variáveis linearmente independentes, melhoraria a eficiência das RNAs, e realizados 3 testes. O resultado do primeiro teste, com os dados do reservatório Marcela-SE, foi melhor em relação aos demais, pois possui mais parâmetros ambientais que influenciam a inferência da clorofila-a, já no terceiro teste o resultado para a utilização das redes não foram tão satisfatórios, uma vez que no agrupamento dos parâmetros em comum, parâmetros importantes a inferência foram desprezados. No primeiro teste a rede RBF com ACP, foi a melhor para representar a inferência da clorofila-a, porém no segundo teste, com os dados de reservatórios em Bacias de Pernambuco, foi a rede MLP com ACP quem melhor determinou. Este resultado mostra a independência de relação entre o fenômeno a ser tratado, pois as redes neurais são conhecidas como modelo caixa preta, assim como a independência do conjuntos de dados e o tipo de rede. Já no terceiro teste, com os dados dos outros testes juntos, apesar dos resultados não serem satisfatórios para os dados dos reservatórios, a utilização das redes neurais não pode ser comprometida, uma vez que os dados obtidos para este teste não apresentaram homogeneidade, este fato pôde ser observado através da técnica de ACP, onde verificou-se 2 grupos distintos de dados. A ferramenta computacional construída mostrou ser eficiente na aplicação das redes neurais e análise de componentes principais, assim como as interfaces construídas se mostraram realmente amigáveis
publishDate 2011
dc.date.issued.fl_str_mv 2011-01-31
dc.date.accessioned.fl_str_mv 2014-06-12T18:06:12Z
dc.date.available.fl_str_mv 2014-06-12T18:06:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Pimentel Marques, Luciana; Lins da Silva, Valdinete. Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Pernambuco, Recife, 2011.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/6576
dc.identifier.dark.fl_str_mv ark:/64986/001300000zht1
identifier_str_mv Pimentel Marques, Luciana; Lins da Silva, Valdinete. Utilização de Redes Neurais Artificiais e Análise de Componentes Principais no Monitoramento da Qualidade da Água. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Engenharia Química, Universidade Federal de Pernambuco, Recife, 2011.
ark:/64986/001300000zht1
url https://repositorio.ufpe.br/handle/123456789/6576
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/6576/4/arquivo7163_1.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/6576/1/arquivo7163_1.pdf
https://repositorio.ufpe.br/bitstream/123456789/6576/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/6576/3/arquivo7163_1.pdf.txt
bitstream.checksum.fl_str_mv 302ab8b26113c0d31d847a9916f685de
e6884bcbe3ed945c11ac77e0587a427a
8a4605be74aa9ea9d79846c1fba20a33
866eb6a8d042a416f85777bb6036566e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172953981059072