Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000001zjs |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/46572 |
Resumo: | Many social interactions can be modeled by networks, in which social actors are represented by nodes and their relationships by edges. Researchers over the years have used social network analysis (SNA) to study the topological structure of the network and understand relational patterns. There are several centrality measures in the literature, with different criteria that define which nodes are more central. In addition, several studies seek to understand how network structures are formed. More recently, scholars have included in the SNA the actors’ attributes in the search for a better understanding, given that these attributes can influence the way relationships occur and, consequently, affect the network structure. By exploring gaps in the literature, this PhD Dissertation aims to contribute to the advancement of this field proposing new metrics: (i) considering the geodesic paths among pairs of nodes, it is proposed a generalized measure, called p-means centrality, depending on the value given to the parameter p, several measures of centrality are obtained; (ii) two centrality measures, based on the law of gravity are proposed, in which the strength of the nodes’ attributes is combined with the strength of the relationships between them, the main measure is called energy disruptive; (iii) to explore the network formation, two measures are proposed that generalize the EI Index, a measure of homophily. One can be applied in case of disjoint and non-disjoint groups and the other, more complete, also explores the case of fuzzy groups. Several networks were considered to test the use of these metrics: (i) the p-means centrality was applied in a co-authorship network and in a transport network; (ii) disruptive energy centrality was applied in two crime networks; (iii) the two measures that generalize the EI index were applied in a co-authorship network and in an international trade network. Among the best results obtained it can be highlighted: (i) the p-means centrality have shown that the most central nodes, defined by negative values of p, are closer to the nodes with the greatest spreading capacity, defined by the Susceptible-Infectious- Recovered (SIR) model; (ii) disruptive energy centrality, when used as a target method, was the most efficient strategy, providing greater network damage than other centrality measures analyzed; (iii) the EI index was able to explore the formation of networks in cases of non-disjoint groups and also fuzzy groups, proving the generalization of the measures. Therefore, the metrics proposed in this work enhance the SNA by unifying existing centrality metrics, incorporating nodes’ attributes in SNA metrics, and extending the scope of homophily studies to more general types of groups. |
id |
UFPE_c1528ec546aa493e3ccff7fe05e39cdf |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/46572 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
ANDRADE, Ricardo Lopes dehttp://lattes.cnpq.br/7258792374108591http://lattes.cnpq.br/2004501146244643RÊGO, Leandro Chaves2022-09-19T16:19:22Z2022-09-19T16:19:22Z2021-12-21ANDRADE, Ricardo Lopes de. Centrality metrics: including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/46572ark:/64986/0013000001zjsMany social interactions can be modeled by networks, in which social actors are represented by nodes and their relationships by edges. Researchers over the years have used social network analysis (SNA) to study the topological structure of the network and understand relational patterns. There are several centrality measures in the literature, with different criteria that define which nodes are more central. In addition, several studies seek to understand how network structures are formed. More recently, scholars have included in the SNA the actors’ attributes in the search for a better understanding, given that these attributes can influence the way relationships occur and, consequently, affect the network structure. By exploring gaps in the literature, this PhD Dissertation aims to contribute to the advancement of this field proposing new metrics: (i) considering the geodesic paths among pairs of nodes, it is proposed a generalized measure, called p-means centrality, depending on the value given to the parameter p, several measures of centrality are obtained; (ii) two centrality measures, based on the law of gravity are proposed, in which the strength of the nodes’ attributes is combined with the strength of the relationships between them, the main measure is called energy disruptive; (iii) to explore the network formation, two measures are proposed that generalize the EI Index, a measure of homophily. One can be applied in case of disjoint and non-disjoint groups and the other, more complete, also explores the case of fuzzy groups. Several networks were considered to test the use of these metrics: (i) the p-means centrality was applied in a co-authorship network and in a transport network; (ii) disruptive energy centrality was applied in two crime networks; (iii) the two measures that generalize the EI index were applied in a co-authorship network and in an international trade network. Among the best results obtained it can be highlighted: (i) the p-means centrality have shown that the most central nodes, defined by negative values of p, are closer to the nodes with the greatest spreading capacity, defined by the Susceptible-Infectious- Recovered (SIR) model; (ii) disruptive energy centrality, when used as a target method, was the most efficient strategy, providing greater network damage than other centrality measures analyzed; (iii) the EI index was able to explore the formation of networks in cases of non-disjoint groups and also fuzzy groups, proving the generalization of the measures. Therefore, the metrics proposed in this work enhance the SNA by unifying existing centrality metrics, incorporating nodes’ attributes in SNA metrics, and extending the scope of homophily studies to more general types of groups.FACEPEMuitas interações sociais podem ser modeladas por redes, em que atores sociais são representados por nós e suas relações por arestas. Pesquisadores, ao longo dos anos, têm utilizado a análise de redes sociais (SNA, do termo em inglês) para estudar a estrutura topológica da rede e entender padrões relacionais. Existem várias medidas de centralidade na literatura, com critérios diferentes que definem quais nós são mais centrais. Além disso, diversos estudos buscam entender como se formam as estruturas das redes. Mais recentemente, estudiosos incluíram na SNA os atributos dos atores na busca por uma melhor compreensão, uma vez que esses atributos podem influenciar a forma como as relações ocorrem e, consequentemente, afetar a estrutura da rede. Esta tese de doutorado, ao explorar lacunas existentes na literatura, tem como objetivo contribuir para o avanço desse campo de estudo, propondo novas métricas: (i) considerando os caminhos geodésicos entre pares de nós, propõe-se uma medida generalizada, chamada de centralidade de média-p, dependendo do valor dado ao parâmetro p, várias medidas de centralidade são obtidas; (ii) propõe-se duas medidas de centralidade, baseadas na lei da gravidade, em que a força dos atributos dos nós é combinada com a força das relações entre eles, a medida principal é chamada de centralidade disruptiva de energia; (iii) para explorar a formação de redes, propõe-se duas medidas que generalizam o índice EI, uma medida de homofilia. Uma pode ser aplicado em caso de grupos disjuntos e não-disjuntos e a outra, mais completa, também explora o caso de grupos fuzzy. Consideramos diversas redes para testar o uso dessas métricas: (i) a centralidade de média-p foi aplicada em uma rede de coautoria e uma rede de transporte; (ii) a centralidade disruptiva de energia foi aplicada em duas redes de criminalidade; (iii) as duas medidas que generalizam o índice EI foram aplicadas em uma rede de coautoria e em uma rede de comércio internacional. Dentre os melhores resultados obtidos podemos destacar: (i) a centralidade de média-p mostrou que os nós mais centrais, definidos por valores negativos de p, estão mais próximos dos nós com maior capacidade de disseminação, definida pelo modelo SIR; a centralidade disruptiva de energia, quando utilizada como método de ataque, foi a estratégia mais eficiente, proporcionando maior dano à rede do que outras medidas de centralidade analisadas; (iii) o índice EI conseguiu explorar a formação das redes em casos de grupos não-disjuntos e também de grupos Fuzzy, comprovando a generalização das medidas. Portanto, as métricas propostas neste trabalho fortalecem a SNA unificando métricas de centralidade existentes, incorporando atributos dos nós em métricas de SNA e estendendo o escopo de estudos de homofilia para tipos mais gerais de grupos.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia de ProducaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessEngenharia de produçãoCentralidade de média-pCentralidade disruptiva de energiaÍndice el generalizadoRedes de comércioRedes de criminalidadeRedes de coautoriaCentrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTTESE Ricardo Lopes de Andrade.pdf.txtTESE Ricardo Lopes de Andrade.pdf.txtExtracted texttext/plain225790https://repositorio.ufpe.br/bitstream/123456789/46572/4/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf.txt09525b9872431ff9e22cc4ce4b791a3dMD54THUMBNAILTESE Ricardo Lopes de Andrade.pdf.jpgTESE Ricardo Lopes de Andrade.pdf.jpgGenerated Thumbnailimage/jpeg1278https://repositorio.ufpe.br/bitstream/123456789/46572/5/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf.jpgb3b8faf22f7afc394da968be827523c1MD55ORIGINALTESE Ricardo Lopes de Andrade.pdfTESE Ricardo Lopes de Andrade.pdfapplication/pdf4104158https://repositorio.ufpe.br/bitstream/123456789/46572/1/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf8c33da60d9304c758d736913d4c4b259MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/46572/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/46572/3/license.txt6928b9260b07fb2755249a5ca9903395MD53123456789/465722022-09-20 03:15:41.569oai:repositorio.ufpe.br:123456789/46572VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-09-20T06:15:41Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis |
title |
Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis |
spellingShingle |
Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis ANDRADE, Ricardo Lopes de Engenharia de produção Centralidade de média-p Centralidade disruptiva de energia Índice el generalizado Redes de comércio Redes de criminalidade Redes de coautoria |
title_short |
Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis |
title_full |
Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis |
title_fullStr |
Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis |
title_full_unstemmed |
Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis |
title_sort |
Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis |
author |
ANDRADE, Ricardo Lopes de |
author_facet |
ANDRADE, Ricardo Lopes de |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7258792374108591 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/2004501146244643 |
dc.contributor.author.fl_str_mv |
ANDRADE, Ricardo Lopes de |
dc.contributor.advisor1.fl_str_mv |
RÊGO, Leandro Chaves |
contributor_str_mv |
RÊGO, Leandro Chaves |
dc.subject.por.fl_str_mv |
Engenharia de produção Centralidade de média-p Centralidade disruptiva de energia Índice el generalizado Redes de comércio Redes de criminalidade Redes de coautoria |
topic |
Engenharia de produção Centralidade de média-p Centralidade disruptiva de energia Índice el generalizado Redes de comércio Redes de criminalidade Redes de coautoria |
description |
Many social interactions can be modeled by networks, in which social actors are represented by nodes and their relationships by edges. Researchers over the years have used social network analysis (SNA) to study the topological structure of the network and understand relational patterns. There are several centrality measures in the literature, with different criteria that define which nodes are more central. In addition, several studies seek to understand how network structures are formed. More recently, scholars have included in the SNA the actors’ attributes in the search for a better understanding, given that these attributes can influence the way relationships occur and, consequently, affect the network structure. By exploring gaps in the literature, this PhD Dissertation aims to contribute to the advancement of this field proposing new metrics: (i) considering the geodesic paths among pairs of nodes, it is proposed a generalized measure, called p-means centrality, depending on the value given to the parameter p, several measures of centrality are obtained; (ii) two centrality measures, based on the law of gravity are proposed, in which the strength of the nodes’ attributes is combined with the strength of the relationships between them, the main measure is called energy disruptive; (iii) to explore the network formation, two measures are proposed that generalize the EI Index, a measure of homophily. One can be applied in case of disjoint and non-disjoint groups and the other, more complete, also explores the case of fuzzy groups. Several networks were considered to test the use of these metrics: (i) the p-means centrality was applied in a co-authorship network and in a transport network; (ii) disruptive energy centrality was applied in two crime networks; (iii) the two measures that generalize the EI index were applied in a co-authorship network and in an international trade network. Among the best results obtained it can be highlighted: (i) the p-means centrality have shown that the most central nodes, defined by negative values of p, are closer to the nodes with the greatest spreading capacity, defined by the Susceptible-Infectious- Recovered (SIR) model; (ii) disruptive energy centrality, when used as a target method, was the most efficient strategy, providing greater network damage than other centrality measures analyzed; (iii) the EI index was able to explore the formation of networks in cases of non-disjoint groups and also fuzzy groups, proving the generalization of the measures. Therefore, the metrics proposed in this work enhance the SNA by unifying existing centrality metrics, incorporating nodes’ attributes in SNA metrics, and extending the scope of homophily studies to more general types of groups. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-12-21 |
dc.date.accessioned.fl_str_mv |
2022-09-19T16:19:22Z |
dc.date.available.fl_str_mv |
2022-09-19T16:19:22Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ANDRADE, Ricardo Lopes de. Centrality metrics: including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/46572 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000001zjs |
identifier_str_mv |
ANDRADE, Ricardo Lopes de. Centrality metrics: including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021. ark:/64986/0013000001zjs |
url |
https://repositorio.ufpe.br/handle/123456789/46572 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Engenharia de Producao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/46572/4/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/46572/5/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/46572/1/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf https://repositorio.ufpe.br/bitstream/123456789/46572/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/46572/3/license.txt |
bitstream.checksum.fl_str_mv |
09525b9872431ff9e22cc4ce4b791a3d b3b8faf22f7afc394da968be827523c1 8c33da60d9304c758d736913d4c4b259 e39d27027a6cc9cb039ad269a5db8e34 6928b9260b07fb2755249a5ca9903395 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172695381245952 |