Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis

Detalhes bibliográficos
Autor(a) principal: ANDRADE, Ricardo Lopes de
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000001zjs
Texto Completo: https://repositorio.ufpe.br/handle/123456789/46572
Resumo: Many social interactions can be modeled by networks, in which social actors are represented by nodes and their relationships by edges. Researchers over the years have used social network analysis (SNA) to study the topological structure of the network and understand relational patterns. There are several centrality measures in the literature, with different criteria that define which nodes are more central. In addition, several studies seek to understand how network structures are formed. More recently, scholars have included in the SNA the actors’ attributes in the search for a better understanding, given that these attributes can influence the way relationships occur and, consequently, affect the network structure. By exploring gaps in the literature, this PhD Dissertation aims to contribute to the advancement of this field proposing new metrics: (i) considering the geodesic paths among pairs of nodes, it is proposed a generalized measure, called p-means centrality, depending on the value given to the parameter p, several measures of centrality are obtained; (ii) two centrality measures, based on the law of gravity are proposed, in which the strength of the nodes’ attributes is combined with the strength of the relationships between them, the main measure is called energy disruptive; (iii) to explore the network formation, two measures are proposed that generalize the EI Index, a measure of homophily. One can be applied in case of disjoint and non-disjoint groups and the other, more complete, also explores the case of fuzzy groups. Several networks were considered to test the use of these metrics: (i) the p-means centrality was applied in a co-authorship network and in a transport network; (ii) disruptive energy centrality was applied in two crime networks; (iii) the two measures that generalize the EI index were applied in a co-authorship network and in an international trade network. Among the best results obtained it can be highlighted: (i) the p-means centrality have shown that the most central nodes, defined by negative values of p, are closer to the nodes with the greatest spreading capacity, defined by the Susceptible-Infectious- Recovered (SIR) model; (ii) disruptive energy centrality, when used as a target method, was the most efficient strategy, providing greater network damage than other centrality measures analyzed; (iii) the EI index was able to explore the formation of networks in cases of non-disjoint groups and also fuzzy groups, proving the generalization of the measures. Therefore, the metrics proposed in this work enhance the SNA by unifying existing centrality metrics, incorporating nodes’ attributes in SNA metrics, and extending the scope of homophily studies to more general types of groups.
id UFPE_c1528ec546aa493e3ccff7fe05e39cdf
oai_identifier_str oai:repositorio.ufpe.br:123456789/46572
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling ANDRADE, Ricardo Lopes dehttp://lattes.cnpq.br/7258792374108591http://lattes.cnpq.br/2004501146244643RÊGO, Leandro Chaves2022-09-19T16:19:22Z2022-09-19T16:19:22Z2021-12-21ANDRADE, Ricardo Lopes de. Centrality metrics: including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/46572ark:/64986/0013000001zjsMany social interactions can be modeled by networks, in which social actors are represented by nodes and their relationships by edges. Researchers over the years have used social network analysis (SNA) to study the topological structure of the network and understand relational patterns. There are several centrality measures in the literature, with different criteria that define which nodes are more central. In addition, several studies seek to understand how network structures are formed. More recently, scholars have included in the SNA the actors’ attributes in the search for a better understanding, given that these attributes can influence the way relationships occur and, consequently, affect the network structure. By exploring gaps in the literature, this PhD Dissertation aims to contribute to the advancement of this field proposing new metrics: (i) considering the geodesic paths among pairs of nodes, it is proposed a generalized measure, called p-means centrality, depending on the value given to the parameter p, several measures of centrality are obtained; (ii) two centrality measures, based on the law of gravity are proposed, in which the strength of the nodes’ attributes is combined with the strength of the relationships between them, the main measure is called energy disruptive; (iii) to explore the network formation, two measures are proposed that generalize the EI Index, a measure of homophily. One can be applied in case of disjoint and non-disjoint groups and the other, more complete, also explores the case of fuzzy groups. Several networks were considered to test the use of these metrics: (i) the p-means centrality was applied in a co-authorship network and in a transport network; (ii) disruptive energy centrality was applied in two crime networks; (iii) the two measures that generalize the EI index were applied in a co-authorship network and in an international trade network. Among the best results obtained it can be highlighted: (i) the p-means centrality have shown that the most central nodes, defined by negative values of p, are closer to the nodes with the greatest spreading capacity, defined by the Susceptible-Infectious- Recovered (SIR) model; (ii) disruptive energy centrality, when used as a target method, was the most efficient strategy, providing greater network damage than other centrality measures analyzed; (iii) the EI index was able to explore the formation of networks in cases of non-disjoint groups and also fuzzy groups, proving the generalization of the measures. Therefore, the metrics proposed in this work enhance the SNA by unifying existing centrality metrics, incorporating nodes’ attributes in SNA metrics, and extending the scope of homophily studies to more general types of groups.FACEPEMuitas interações sociais podem ser modeladas por redes, em que atores sociais são representados por nós e suas relações por arestas. Pesquisadores, ao longo dos anos, têm utilizado a análise de redes sociais (SNA, do termo em inglês) para estudar a estrutura topológica da rede e entender padrões relacionais. Existem várias medidas de centralidade na literatura, com critérios diferentes que definem quais nós são mais centrais. Além disso, diversos estudos buscam entender como se formam as estruturas das redes. Mais recentemente, estudiosos incluíram na SNA os atributos dos atores na busca por uma melhor compreensão, uma vez que esses atributos podem influenciar a forma como as relações ocorrem e, consequentemente, afetar a estrutura da rede. Esta tese de doutorado, ao explorar lacunas existentes na literatura, tem como objetivo contribuir para o avanço desse campo de estudo, propondo novas métricas: (i) considerando os caminhos geodésicos entre pares de nós, propõe-se uma medida generalizada, chamada de centralidade de média-p, dependendo do valor dado ao parâmetro p, várias medidas de centralidade são obtidas; (ii) propõe-se duas medidas de centralidade, baseadas na lei da gravidade, em que a força dos atributos dos nós é combinada com a força das relações entre eles, a medida principal é chamada de centralidade disruptiva de energia; (iii) para explorar a formação de redes, propõe-se duas medidas que generalizam o índice EI, uma medida de homofilia. Uma pode ser aplicado em caso de grupos disjuntos e não-disjuntos e a outra, mais completa, também explora o caso de grupos fuzzy. Consideramos diversas redes para testar o uso dessas métricas: (i) a centralidade de média-p foi aplicada em uma rede de coautoria e uma rede de transporte; (ii) a centralidade disruptiva de energia foi aplicada em duas redes de criminalidade; (iii) as duas medidas que generalizam o índice EI foram aplicadas em uma rede de coautoria e em uma rede de comércio internacional. Dentre os melhores resultados obtidos podemos destacar: (i) a centralidade de média-p mostrou que os nós mais centrais, definidos por valores negativos de p, estão mais próximos dos nós com maior capacidade de disseminação, definida pelo modelo SIR; a centralidade disruptiva de energia, quando utilizada como método de ataque, foi a estratégia mais eficiente, proporcionando maior dano à rede do que outras medidas de centralidade analisadas; (iii) o índice EI conseguiu explorar a formação das redes em casos de grupos não-disjuntos e também de grupos Fuzzy, comprovando a generalização das medidas. Portanto, as métricas propostas neste trabalho fortalecem a SNA unificando métricas de centralidade existentes, incorporando atributos dos nós em métricas de SNA e estendendo o escopo de estudos de homofilia para tipos mais gerais de grupos.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Engenharia de ProducaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessEngenharia de produçãoCentralidade de média-pCentralidade disruptiva de energiaÍndice el generalizadoRedes de comércioRedes de criminalidadeRedes de coautoriaCentrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTTESE Ricardo Lopes de Andrade.pdf.txtTESE Ricardo Lopes de Andrade.pdf.txtExtracted texttext/plain225790https://repositorio.ufpe.br/bitstream/123456789/46572/4/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf.txt09525b9872431ff9e22cc4ce4b791a3dMD54THUMBNAILTESE Ricardo Lopes de Andrade.pdf.jpgTESE Ricardo Lopes de Andrade.pdf.jpgGenerated Thumbnailimage/jpeg1278https://repositorio.ufpe.br/bitstream/123456789/46572/5/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf.jpgb3b8faf22f7afc394da968be827523c1MD55ORIGINALTESE Ricardo Lopes de Andrade.pdfTESE Ricardo Lopes de Andrade.pdfapplication/pdf4104158https://repositorio.ufpe.br/bitstream/123456789/46572/1/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf8c33da60d9304c758d736913d4c4b259MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/46572/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82142https://repositorio.ufpe.br/bitstream/123456789/46572/3/license.txt6928b9260b07fb2755249a5ca9903395MD53123456789/465722022-09-20 03:15:41.569oai:repositorio.ufpe.br:123456789/46572VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2HDp8OjbyBkZSBEb2N1bWVudG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUKIAoKRGVjbGFybyBlc3RhciBjaWVudGUgZGUgcXVlIGVzdGUgVGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyB0ZW0gbyBvYmpldGl2byBkZSBkaXZ1bGdhw6fDo28gZG9zIGRvY3VtZW50b3MgZGVwb3NpdGFkb3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBlIGRlY2xhcm8gcXVlOgoKSSAtICBvIGNvbnRlw7pkbyBkaXNwb25pYmlsaXphZG8gw6kgZGUgcmVzcG9uc2FiaWxpZGFkZSBkZSBzdWEgYXV0b3JpYTsKCklJIC0gbyBjb250ZcO6ZG8gw6kgb3JpZ2luYWwsIGUgc2UgbyB0cmFiYWxobyBlL291IHBhbGF2cmFzIGRlIG91dHJhcyBwZXNzb2FzIGZvcmFtIHV0aWxpemFkb3MsIGVzdGFzIGZvcmFtIGRldmlkYW1lbnRlIHJlY29uaGVjaWRhczsKCklJSSAtIHF1YW5kbyB0cmF0YXItc2UgZGUgVHJhYmFsaG8gZGUgQ29uY2x1c8OjbyBkZSBDdXJzbywgRGlzc2VydGHDp8OjbyBvdSBUZXNlOiBvIGFycXVpdm8gZGVwb3NpdGFkbyBjb3JyZXNwb25kZSDDoCB2ZXJzw6NvIGZpbmFsIGRvIHRyYWJhbGhvOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogZXN0b3UgY2llbnRlIGRlIHF1ZSBhIGFsdGVyYcOnw6NvIGRhIG1vZGFsaWRhZGUgZGUgYWNlc3NvIGFvIGRvY3VtZW50byBhcMOzcyBvIGRlcMOzc2l0byBlIGFudGVzIGRlIGZpbmRhciBvIHBlcsOtb2RvIGRlIGVtYmFyZ28sIHF1YW5kbyBmb3IgZXNjb2xoaWRvIGFjZXNzbyByZXN0cml0bywgc2Vyw6EgcGVybWl0aWRhIG1lZGlhbnRlIHNvbGljaXRhw6fDo28gZG8gKGEpIGF1dG9yIChhKSBhbyBTaXN0ZW1hIEludGVncmFkbyBkZSBCaWJsaW90ZWNhcyBkYSBVRlBFIChTSUIvVUZQRSkuCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBBYmVydG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAsIGRlIDE5IGRlIGZldmVyZWlybyBkZSAxOTk4LCBhcnQuIDI5LCBpbmNpc28gSUlJLCBhdXRvcml6byBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFBlcm5hbWJ1Y28gYSBkaXNwb25pYmlsaXphciBncmF0dWl0YW1lbnRlLCBzZW0gcmVzc2FyY2ltZW50byBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHBhcmEgZmlucyBkZSBsZWl0dXJhLCBpbXByZXNzw6NvIGUvb3UgZG93bmxvYWQgKGFxdWlzacOnw6NvKSBhdHJhdsOpcyBkbyBzaXRlIGRvIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgbm8gZW5kZXJlw6dvIGh0dHA6Ly93d3cucmVwb3NpdG9yaW8udWZwZS5iciwgYSBwYXJ0aXIgZGEgZGF0YSBkZSBkZXDDs3NpdG8uCgogClBhcmEgdHJhYmFsaG9zIGVtIEFjZXNzbyBSZXN0cml0bzoKCk5hIHF1YWxpZGFkZSBkZSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBhdXRvciBxdWUgcmVjYWVtIHNvYnJlIGVzdGUgZG9jdW1lbnRvLCBmdW5kYW1lbnRhZG8gbmEgTGVpIGRlIERpcmVpdG8gQXV0b3JhbCBubyA5LjYxMCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIHF1YW5kbyBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvIGNvbmRpemVudGUgYW8gdGlwbyBkZSBkb2N1bWVudG8sIGNvbmZvcm1lIGluZGljYWRvIG5vIGNhbXBvIERhdGEgZGUgRW1iYXJnby4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-09-20T06:15:41Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis
title Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis
spellingShingle Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis
ANDRADE, Ricardo Lopes de
Engenharia de produção
Centralidade de média-p
Centralidade disruptiva de energia
Índice el generalizado
Redes de comércio
Redes de criminalidade
Redes de coautoria
title_short Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis
title_full Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis
title_fullStr Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis
title_full_unstemmed Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis
title_sort Centrality metrics : including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis
author ANDRADE, Ricardo Lopes de
author_facet ANDRADE, Ricardo Lopes de
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7258792374108591
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2004501146244643
dc.contributor.author.fl_str_mv ANDRADE, Ricardo Lopes de
dc.contributor.advisor1.fl_str_mv RÊGO, Leandro Chaves
contributor_str_mv RÊGO, Leandro Chaves
dc.subject.por.fl_str_mv Engenharia de produção
Centralidade de média-p
Centralidade disruptiva de energia
Índice el generalizado
Redes de comércio
Redes de criminalidade
Redes de coautoria
topic Engenharia de produção
Centralidade de média-p
Centralidade disruptiva de energia
Índice el generalizado
Redes de comércio
Redes de criminalidade
Redes de coautoria
description Many social interactions can be modeled by networks, in which social actors are represented by nodes and their relationships by edges. Researchers over the years have used social network analysis (SNA) to study the topological structure of the network and understand relational patterns. There are several centrality measures in the literature, with different criteria that define which nodes are more central. In addition, several studies seek to understand how network structures are formed. More recently, scholars have included in the SNA the actors’ attributes in the search for a better understanding, given that these attributes can influence the way relationships occur and, consequently, affect the network structure. By exploring gaps in the literature, this PhD Dissertation aims to contribute to the advancement of this field proposing new metrics: (i) considering the geodesic paths among pairs of nodes, it is proposed a generalized measure, called p-means centrality, depending on the value given to the parameter p, several measures of centrality are obtained; (ii) two centrality measures, based on the law of gravity are proposed, in which the strength of the nodes’ attributes is combined with the strength of the relationships between them, the main measure is called energy disruptive; (iii) to explore the network formation, two measures are proposed that generalize the EI Index, a measure of homophily. One can be applied in case of disjoint and non-disjoint groups and the other, more complete, also explores the case of fuzzy groups. Several networks were considered to test the use of these metrics: (i) the p-means centrality was applied in a co-authorship network and in a transport network; (ii) disruptive energy centrality was applied in two crime networks; (iii) the two measures that generalize the EI index were applied in a co-authorship network and in an international trade network. Among the best results obtained it can be highlighted: (i) the p-means centrality have shown that the most central nodes, defined by negative values of p, are closer to the nodes with the greatest spreading capacity, defined by the Susceptible-Infectious- Recovered (SIR) model; (ii) disruptive energy centrality, when used as a target method, was the most efficient strategy, providing greater network damage than other centrality measures analyzed; (iii) the EI index was able to explore the formation of networks in cases of non-disjoint groups and also fuzzy groups, proving the generalization of the measures. Therefore, the metrics proposed in this work enhance the SNA by unifying existing centrality metrics, incorporating nodes’ attributes in SNA metrics, and extending the scope of homophily studies to more general types of groups.
publishDate 2021
dc.date.issued.fl_str_mv 2021-12-21
dc.date.accessioned.fl_str_mv 2022-09-19T16:19:22Z
dc.date.available.fl_str_mv 2022-09-19T16:19:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ANDRADE, Ricardo Lopes de. Centrality metrics: including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/46572
dc.identifier.dark.fl_str_mv ark:/64986/0013000001zjs
identifier_str_mv ANDRADE, Ricardo Lopes de. Centrality metrics: including nodes’ attributes and generalizing geometric and homophily metrics in social network analysis. 2021. Tese (Doutorado em Engenharia de Produção) - Universidade Federal de Pernambuco, Recife, 2021.
ark:/64986/0013000001zjs
url https://repositorio.ufpe.br/handle/123456789/46572
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Engenharia de Producao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/46572/4/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/46572/5/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/46572/1/TESE%20Ricardo%20Lopes%20de%20Andrade.pdf
https://repositorio.ufpe.br/bitstream/123456789/46572/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/46572/3/license.txt
bitstream.checksum.fl_str_mv 09525b9872431ff9e22cc4ce4b791a3d
b3b8faf22f7afc394da968be827523c1
8c33da60d9304c758d736913d4c4b259
e39d27027a6cc9cb039ad269a5db8e34
6928b9260b07fb2755249a5ca9903395
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172695381245952