Explicit computational paths in type theory

Detalhes bibliográficos
Autor(a) principal: RAMOS, Arthur Freitas
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000032d5
Texto Completo: https://repositorio.ufpe.br/handle/123456789/32902
Resumo: The current work has three main objectives. The first one is the proposal of computational paths as a new entity of type theory. In this proposal, we point out the fact that computational paths should be seen as the syntax counterpart of the homotopical paths between terms of a type. We also propose a formalization of the identity type using computational paths. The second objective is the proposal of a mathematical structure fora type using computational paths. We show that using categorical semantics it is possible to induce a groupoid structure for a type and also a higher groupoid structure, using computational paths and a rewrite system. We use this groupoid structure to prove that computational paths also refutes the uniqueness of identity proofs. The last objective is to formulate and prove the main concepts and building blocks of homotopy type theory. We end this last objective with a proof of the isomorphism between the fundamental group of the circle and the group of the integers.
id UFPE_c1a2ae7875f0d03c100329993eda5d19
oai_identifier_str oai:repositorio.ufpe.br:123456789/32902
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling RAMOS, Arthur Freitashttp://lattes.cnpq.br/4396077712779137http://lattes.cnpq.br/9932708325371272OLIVEIRA, Anjolina Grisi deDE QUEIROZ, Ruy José Guerra Barretto2019-09-13T22:35:53Z2019-09-13T22:35:53Z2018-08-17https://repositorio.ufpe.br/handle/123456789/32902ark:/64986/00130000032d5The current work has three main objectives. The first one is the proposal of computational paths as a new entity of type theory. In this proposal, we point out the fact that computational paths should be seen as the syntax counterpart of the homotopical paths between terms of a type. We also propose a formalization of the identity type using computational paths. The second objective is the proposal of a mathematical structure fora type using computational paths. We show that using categorical semantics it is possible to induce a groupoid structure for a type and also a higher groupoid structure, using computational paths and a rewrite system. We use this groupoid structure to prove that computational paths also refutes the uniqueness of identity proofs. The last objective is to formulate and prove the main concepts and building blocks of homotopy type theory. We end this last objective with a proof of the isomorphism between the fundamental group of the circle and the group of the integers.CAPESO presente trabalho tem três objetivos principais. O primeiro é propor caminhos computacionais como uma nova entidade da teoria dos tipos. Nessa proposta, indicamos que os caminhos computacionais podem ser vistos como uma contrapartida sintática dos caminhos homotópicos entre termos de um mesmo tipo. Também propomos uma formalização do tipo identidade usando caminhos computacionais. O segundo objetivo é propor uma estrutura matemática para um tipo usando os caminhos computacionais. Mostramos, usando semântica categórica, que é possível induzir uma estrutura de grupóide de alta ordem para um tipo, utilizando os caminhos computacionais e um sistema de reescrita. Usamos o modelo de grupóide para provar que os caminhos computacionais também refutam a unicidade de provas de identidade. O último objetivo é formular e provar os principais conceitos da teoria homotópica dos tipos utilizando caminhos. Finalizamos esse último objetivo com uma prova do isomorfismo entre o grupo fundamental do círculo e o grupo dos inteiros.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCiência da computaçãoTeoria da computaçãoExplicit computational paths in type theoryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Arthur Freitas Ramos.pdf.jpgTESE Arthur Freitas Ramos.pdf.jpgGenerated Thumbnailimage/jpeg1227https://repositorio.ufpe.br/bitstream/123456789/32902/5/TESE%20Arthur%20Freitas%20Ramos.pdf.jpgfd817b4d7c1e1987ed64a7c70f34cf2fMD55ORIGINALTESE Arthur Freitas Ramos.pdfTESE Arthur Freitas Ramos.pdfapplication/pdf1123905https://repositorio.ufpe.br/bitstream/123456789/32902/1/TESE%20Arthur%20Freitas%20Ramos.pdf1b5d6e8da02bc15b1956d737b33e2f07MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/32902/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/32902/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTTESE Arthur Freitas Ramos.pdf.txtTESE Arthur Freitas Ramos.pdf.txtExtracted texttext/plain324236https://repositorio.ufpe.br/bitstream/123456789/32902/4/TESE%20Arthur%20Freitas%20Ramos.pdf.txt78d8a99a278beec02bb4243e2b3c5294MD54123456789/329022019-10-25 10:54:49.897oai:repositorio.ufpe.br:123456789/32902TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T13:54:49Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Explicit computational paths in type theory
title Explicit computational paths in type theory
spellingShingle Explicit computational paths in type theory
RAMOS, Arthur Freitas
Ciência da computação
Teoria da computação
title_short Explicit computational paths in type theory
title_full Explicit computational paths in type theory
title_fullStr Explicit computational paths in type theory
title_full_unstemmed Explicit computational paths in type theory
title_sort Explicit computational paths in type theory
author RAMOS, Arthur Freitas
author_facet RAMOS, Arthur Freitas
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4396077712779137
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9932708325371272
dc.contributor.author.fl_str_mv RAMOS, Arthur Freitas
dc.contributor.advisor1.fl_str_mv OLIVEIRA, Anjolina Grisi de
dc.contributor.advisor-co1.fl_str_mv DE QUEIROZ, Ruy José Guerra Barretto
contributor_str_mv OLIVEIRA, Anjolina Grisi de
DE QUEIROZ, Ruy José Guerra Barretto
dc.subject.por.fl_str_mv Ciência da computação
Teoria da computação
topic Ciência da computação
Teoria da computação
description The current work has three main objectives. The first one is the proposal of computational paths as a new entity of type theory. In this proposal, we point out the fact that computational paths should be seen as the syntax counterpart of the homotopical paths between terms of a type. We also propose a formalization of the identity type using computational paths. The second objective is the proposal of a mathematical structure fora type using computational paths. We show that using categorical semantics it is possible to induce a groupoid structure for a type and also a higher groupoid structure, using computational paths and a rewrite system. We use this groupoid structure to prove that computational paths also refutes the uniqueness of identity proofs. The last objective is to formulate and prove the main concepts and building blocks of homotopy type theory. We end this last objective with a proof of the isomorphism between the fundamental group of the circle and the group of the integers.
publishDate 2018
dc.date.issued.fl_str_mv 2018-08-17
dc.date.accessioned.fl_str_mv 2019-09-13T22:35:53Z
dc.date.available.fl_str_mv 2019-09-13T22:35:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/32902
dc.identifier.dark.fl_str_mv ark:/64986/00130000032d5
url https://repositorio.ufpe.br/handle/123456789/32902
identifier_str_mv ark:/64986/00130000032d5
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/32902/5/TESE%20Arthur%20Freitas%20Ramos.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/32902/1/TESE%20Arthur%20Freitas%20Ramos.pdf
https://repositorio.ufpe.br/bitstream/123456789/32902/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/32902/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/32902/4/TESE%20Arthur%20Freitas%20Ramos.pdf.txt
bitstream.checksum.fl_str_mv fd817b4d7c1e1987ed64a7c70f34cf2f
1b5d6e8da02bc15b1956d737b33e2f07
e39d27027a6cc9cb039ad269a5db8e34
bd573a5ca8288eb7272482765f819534
78d8a99a278beec02bb4243e2b3c5294
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172706092449792