Analytic solutions to stochastic epidemic models

Detalhes bibliográficos
Autor(a) principal: SOUZA, Danillo Barros de
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000wbgs
Texto Completo: https://repositorio.ufpe.br/handle/123456789/25518
Resumo: Even the simplest outbreaks might not be easily predictable. Fortunately, deterministic and stochastic models, systems differential equations and computational simulations have proved to be useful to a better understanding of the mechanics that leads to an epidemic outbreak. Whilst such systems are regularly studied from a modelling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low copy number stochasticity. Here, the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the master equations describing epidemics represented via the SIR model (Susceptible-Infected-Recovered), originally developed via Kermack and McKendrick’s theory. This is illustrated with an exact solution for a short size of population, including a consideration of very short time scales for the next infection, which emphasises when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for the SIR model with an arbitrary number of individuals following diagonalization. This leads to the solution of this complex stochastic problem, including an explicit way to express the mean time of epidemic and basic reproduction number depending on the size of population and parameters of infection and recovery. Specifically, the project objective to apply use of the same tools in the approach of system governed by law of mass action, as previously developed for the Michaelis-Menten enzyme kinetics model [Santos et. al. Phys Rev. E 92, 062714 (2015)]. For this, a flexible symbolic Maple code is provided, demonstrating the prospective advantages of this framework compared to Gillespie stochastic simulation algorithms.
id UFPE_c3e3b836011f4f1e10684ada63ecdaa9
oai_identifier_str oai:repositorio.ufpe.br:123456789/25518
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SOUZA, Danillo Barros dehttp://lattes.cnpq.br/1438951601207489http://lattes.cnpq.br/9100032882367430SANTOS, Fernando Antônio Nóbrega2018-08-09T22:43:44Z2018-08-09T22:43:44Z2017-02-24https://repositorio.ufpe.br/handle/123456789/25518ark:/64986/001300000wbgsEven the simplest outbreaks might not be easily predictable. Fortunately, deterministic and stochastic models, systems differential equations and computational simulations have proved to be useful to a better understanding of the mechanics that leads to an epidemic outbreak. Whilst such systems are regularly studied from a modelling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low copy number stochasticity. Here, the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the master equations describing epidemics represented via the SIR model (Susceptible-Infected-Recovered), originally developed via Kermack and McKendrick’s theory. This is illustrated with an exact solution for a short size of population, including a consideration of very short time scales for the next infection, which emphasises when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for the SIR model with an arbitrary number of individuals following diagonalization. This leads to the solution of this complex stochastic problem, including an explicit way to express the mean time of epidemic and basic reproduction number depending on the size of population and parameters of infection and recovery. Specifically, the project objective to apply use of the same tools in the approach of system governed by law of mass action, as previously developed for the Michaelis-Menten enzyme kinetics model [Santos et. al. Phys Rev. E 92, 062714 (2015)]. For this, a flexible symbolic Maple code is provided, demonstrating the prospective advantages of this framework compared to Gillespie stochastic simulation algorithms.CNPqMesmo os surtos mais simples podem não ser facilmente previsíveis. Felizmente, modelos determinísticos e estocásticos, equações diferenciais de sistemas e simulações computa- cionais provaram ser úteis para uma melhor compreensão da mecânica que leva a um surto epidêmico. Enquanto tais sistemas são regularmente estudados a partir de um ponto de vista de modelagem usando algoritmos de simulação estocástica, inúmeras ferramentas analíticas potenciais podem ser herdadas da física estatística e quântica, substituindo aleatoriedade devido a flutuações quânticas com baixa estocástica de número de cópias. Aqui, a representação do espaço de Fock, usada na mecânica quântica, é combinada com a álgebra simbólica dos operadores de criação e aniquilação para considerar soluções explícitas para as equações mestra que descrevem epidemias representadas via modelo SIR (Suscetível-Infectado-Recuperado), originalmente desenvolvido pela teoria de Kermack e McKendrick. Isto é ilustrado com uma solução exata para um tamanho pequeno de população, considerando escalas de tempo muito curtas para a próxima infecção, que enfatiza quando a rigidez está presente mesmo para números de cópias pequenos. Além disso, apresentamos uma representação matricial geral para o modelo SIR com um número arbitrário de indivíduos após diagonalização. Isto nos leva à solução deste problema es- tocástico complexo, além de ter uma maneira explícita de expressar o tempo médio de epidemia e o número básico de reprodução, ambos dependendo do tamanho da população e parâmetros de infecção e recuperação. Especificamente, o objetivo é utilizar as mesmas ferramentas na abordagem de um sistema regido por lei de ação das massas, como anterior- mente desenvolvido para o modelo de cinética enzimática de Michaelis-Menten [Santos et. Al PRE 2015]. Para isso, é fornecido um código Maple simbólico flexível, demonstrando as vantagens potenciais desta estrutura comparados aos algoritmos de simulação estocástica de Gillespie.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCiência da computaçãoModelos estocásticosAnalytic solutions to stochastic epidemic modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Danillo Barros de Souza.pdf.jpgDISSERTAÇÃO Danillo Barros de Souza.pdf.jpgGenerated Thumbnailimage/jpeg1294https://repositorio.ufpe.br/bitstream/123456789/25518/6/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf.jpg40355473234539882936dc97bfe4f4acMD56ORIGINALDISSERTAÇÃO Danillo Barros de Souza.pdfDISSERTAÇÃO Danillo Barros de Souza.pdfapplication/pdf7642919https://repositorio.ufpe.br/bitstream/123456789/25518/1/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf6768e6fd189bd85a95913caab91d956cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/25518/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/25518/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTDISSERTAÇÃO Danillo Barros de Souza.pdf.txtDISSERTAÇÃO Danillo Barros de Souza.pdf.txtExtracted texttext/plain137271https://repositorio.ufpe.br/bitstream/123456789/25518/5/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf.txt49cc82e6961d7ba3b1b19f8f90d55c5cMD55123456789/255182019-10-25 09:03:24.454oai:repositorio.ufpe.br:123456789/25518TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T12:03:24Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Analytic solutions to stochastic epidemic models
title Analytic solutions to stochastic epidemic models
spellingShingle Analytic solutions to stochastic epidemic models
SOUZA, Danillo Barros de
Ciência da computação
Modelos estocásticos
title_short Analytic solutions to stochastic epidemic models
title_full Analytic solutions to stochastic epidemic models
title_fullStr Analytic solutions to stochastic epidemic models
title_full_unstemmed Analytic solutions to stochastic epidemic models
title_sort Analytic solutions to stochastic epidemic models
author SOUZA, Danillo Barros de
author_facet SOUZA, Danillo Barros de
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/1438951601207489
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9100032882367430
dc.contributor.author.fl_str_mv SOUZA, Danillo Barros de
dc.contributor.advisor1.fl_str_mv SANTOS, Fernando Antônio Nóbrega
contributor_str_mv SANTOS, Fernando Antônio Nóbrega
dc.subject.por.fl_str_mv Ciência da computação
Modelos estocásticos
topic Ciência da computação
Modelos estocásticos
description Even the simplest outbreaks might not be easily predictable. Fortunately, deterministic and stochastic models, systems differential equations and computational simulations have proved to be useful to a better understanding of the mechanics that leads to an epidemic outbreak. Whilst such systems are regularly studied from a modelling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low copy number stochasticity. Here, the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the master equations describing epidemics represented via the SIR model (Susceptible-Infected-Recovered), originally developed via Kermack and McKendrick’s theory. This is illustrated with an exact solution for a short size of population, including a consideration of very short time scales for the next infection, which emphasises when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for the SIR model with an arbitrary number of individuals following diagonalization. This leads to the solution of this complex stochastic problem, including an explicit way to express the mean time of epidemic and basic reproduction number depending on the size of population and parameters of infection and recovery. Specifically, the project objective to apply use of the same tools in the approach of system governed by law of mass action, as previously developed for the Michaelis-Menten enzyme kinetics model [Santos et. al. Phys Rev. E 92, 062714 (2015)]. For this, a flexible symbolic Maple code is provided, demonstrating the prospective advantages of this framework compared to Gillespie stochastic simulation algorithms.
publishDate 2017
dc.date.issued.fl_str_mv 2017-02-24
dc.date.accessioned.fl_str_mv 2018-08-09T22:43:44Z
dc.date.available.fl_str_mv 2018-08-09T22:43:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/25518
dc.identifier.dark.fl_str_mv ark:/64986/001300000wbgs
url https://repositorio.ufpe.br/handle/123456789/25518
identifier_str_mv ark:/64986/001300000wbgs
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Matematica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/25518/6/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/25518/1/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf
https://repositorio.ufpe.br/bitstream/123456789/25518/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/25518/4/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/25518/5/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf.txt
bitstream.checksum.fl_str_mv 40355473234539882936dc97bfe4f4ac
6768e6fd189bd85a95913caab91d956c
4b8a02c7f2818eaf00dcf2260dd5eb08
e39d27027a6cc9cb039ad269a5db8e34
49cc82e6961d7ba3b1b19f8f90d55c5c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172933088182272