Analytic solutions to stochastic epidemic models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000wbgs |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/25518 |
Resumo: | Even the simplest outbreaks might not be easily predictable. Fortunately, deterministic and stochastic models, systems differential equations and computational simulations have proved to be useful to a better understanding of the mechanics that leads to an epidemic outbreak. Whilst such systems are regularly studied from a modelling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low copy number stochasticity. Here, the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the master equations describing epidemics represented via the SIR model (Susceptible-Infected-Recovered), originally developed via Kermack and McKendrick’s theory. This is illustrated with an exact solution for a short size of population, including a consideration of very short time scales for the next infection, which emphasises when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for the SIR model with an arbitrary number of individuals following diagonalization. This leads to the solution of this complex stochastic problem, including an explicit way to express the mean time of epidemic and basic reproduction number depending on the size of population and parameters of infection and recovery. Specifically, the project objective to apply use of the same tools in the approach of system governed by law of mass action, as previously developed for the Michaelis-Menten enzyme kinetics model [Santos et. al. Phys Rev. E 92, 062714 (2015)]. For this, a flexible symbolic Maple code is provided, demonstrating the prospective advantages of this framework compared to Gillespie stochastic simulation algorithms. |
id |
UFPE_c3e3b836011f4f1e10684ada63ecdaa9 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/25518 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SOUZA, Danillo Barros dehttp://lattes.cnpq.br/1438951601207489http://lattes.cnpq.br/9100032882367430SANTOS, Fernando Antônio Nóbrega2018-08-09T22:43:44Z2018-08-09T22:43:44Z2017-02-24https://repositorio.ufpe.br/handle/123456789/25518ark:/64986/001300000wbgsEven the simplest outbreaks might not be easily predictable. Fortunately, deterministic and stochastic models, systems differential equations and computational simulations have proved to be useful to a better understanding of the mechanics that leads to an epidemic outbreak. Whilst such systems are regularly studied from a modelling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low copy number stochasticity. Here, the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the master equations describing epidemics represented via the SIR model (Susceptible-Infected-Recovered), originally developed via Kermack and McKendrick’s theory. This is illustrated with an exact solution for a short size of population, including a consideration of very short time scales for the next infection, which emphasises when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for the SIR model with an arbitrary number of individuals following diagonalization. This leads to the solution of this complex stochastic problem, including an explicit way to express the mean time of epidemic and basic reproduction number depending on the size of population and parameters of infection and recovery. Specifically, the project objective to apply use of the same tools in the approach of system governed by law of mass action, as previously developed for the Michaelis-Menten enzyme kinetics model [Santos et. al. Phys Rev. E 92, 062714 (2015)]. For this, a flexible symbolic Maple code is provided, demonstrating the prospective advantages of this framework compared to Gillespie stochastic simulation algorithms.CNPqMesmo os surtos mais simples podem não ser facilmente previsíveis. Felizmente, modelos determinísticos e estocásticos, equações diferenciais de sistemas e simulações computa- cionais provaram ser úteis para uma melhor compreensão da mecânica que leva a um surto epidêmico. Enquanto tais sistemas são regularmente estudados a partir de um ponto de vista de modelagem usando algoritmos de simulação estocástica, inúmeras ferramentas analíticas potenciais podem ser herdadas da física estatística e quântica, substituindo aleatoriedade devido a flutuações quânticas com baixa estocástica de número de cópias. Aqui, a representação do espaço de Fock, usada na mecânica quântica, é combinada com a álgebra simbólica dos operadores de criação e aniquilação para considerar soluções explícitas para as equações mestra que descrevem epidemias representadas via modelo SIR (Suscetível-Infectado-Recuperado), originalmente desenvolvido pela teoria de Kermack e McKendrick. Isto é ilustrado com uma solução exata para um tamanho pequeno de população, considerando escalas de tempo muito curtas para a próxima infecção, que enfatiza quando a rigidez está presente mesmo para números de cópias pequenos. Além disso, apresentamos uma representação matricial geral para o modelo SIR com um número arbitrário de indivíduos após diagonalização. Isto nos leva à solução deste problema es- tocástico complexo, além de ter uma maneira explícita de expressar o tempo médio de epidemia e o número básico de reprodução, ambos dependendo do tamanho da população e parâmetros de infecção e recuperação. Especificamente, o objetivo é utilizar as mesmas ferramentas na abordagem de um sistema regido por lei de ação das massas, como anterior- mente desenvolvido para o modelo de cinética enzimática de Michaelis-Menten [Santos et. Al PRE 2015]. Para isso, é fornecido um código Maple simbólico flexível, demonstrando as vantagens potenciais desta estrutura comparados aos algoritmos de simulação estocástica de Gillespie.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessCiência da computaçãoModelos estocásticosAnalytic solutions to stochastic epidemic modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Danillo Barros de Souza.pdf.jpgDISSERTAÇÃO Danillo Barros de Souza.pdf.jpgGenerated Thumbnailimage/jpeg1294https://repositorio.ufpe.br/bitstream/123456789/25518/6/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf.jpg40355473234539882936dc97bfe4f4acMD56ORIGINALDISSERTAÇÃO Danillo Barros de Souza.pdfDISSERTAÇÃO Danillo Barros de Souza.pdfapplication/pdf7642919https://repositorio.ufpe.br/bitstream/123456789/25518/1/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf6768e6fd189bd85a95913caab91d956cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/25518/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/25518/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTDISSERTAÇÃO Danillo Barros de Souza.pdf.txtDISSERTAÇÃO Danillo Barros de Souza.pdf.txtExtracted texttext/plain137271https://repositorio.ufpe.br/bitstream/123456789/25518/5/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf.txt49cc82e6961d7ba3b1b19f8f90d55c5cMD55123456789/255182019-10-25 09:03:24.454oai:repositorio.ufpe.br:123456789/25518TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T12:03:24Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Analytic solutions to stochastic epidemic models |
title |
Analytic solutions to stochastic epidemic models |
spellingShingle |
Analytic solutions to stochastic epidemic models SOUZA, Danillo Barros de Ciência da computação Modelos estocásticos |
title_short |
Analytic solutions to stochastic epidemic models |
title_full |
Analytic solutions to stochastic epidemic models |
title_fullStr |
Analytic solutions to stochastic epidemic models |
title_full_unstemmed |
Analytic solutions to stochastic epidemic models |
title_sort |
Analytic solutions to stochastic epidemic models |
author |
SOUZA, Danillo Barros de |
author_facet |
SOUZA, Danillo Barros de |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/1438951601207489 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9100032882367430 |
dc.contributor.author.fl_str_mv |
SOUZA, Danillo Barros de |
dc.contributor.advisor1.fl_str_mv |
SANTOS, Fernando Antônio Nóbrega |
contributor_str_mv |
SANTOS, Fernando Antônio Nóbrega |
dc.subject.por.fl_str_mv |
Ciência da computação Modelos estocásticos |
topic |
Ciência da computação Modelos estocásticos |
description |
Even the simplest outbreaks might not be easily predictable. Fortunately, deterministic and stochastic models, systems differential equations and computational simulations have proved to be useful to a better understanding of the mechanics that leads to an epidemic outbreak. Whilst such systems are regularly studied from a modelling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low copy number stochasticity. Here, the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the master equations describing epidemics represented via the SIR model (Susceptible-Infected-Recovered), originally developed via Kermack and McKendrick’s theory. This is illustrated with an exact solution for a short size of population, including a consideration of very short time scales for the next infection, which emphasises when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for the SIR model with an arbitrary number of individuals following diagonalization. This leads to the solution of this complex stochastic problem, including an explicit way to express the mean time of epidemic and basic reproduction number depending on the size of population and parameters of infection and recovery. Specifically, the project objective to apply use of the same tools in the approach of system governed by law of mass action, as previously developed for the Michaelis-Menten enzyme kinetics model [Santos et. al. Phys Rev. E 92, 062714 (2015)]. For this, a flexible symbolic Maple code is provided, demonstrating the prospective advantages of this framework compared to Gillespie stochastic simulation algorithms. |
publishDate |
2017 |
dc.date.issued.fl_str_mv |
2017-02-24 |
dc.date.accessioned.fl_str_mv |
2018-08-09T22:43:44Z |
dc.date.available.fl_str_mv |
2018-08-09T22:43:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/25518 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000wbgs |
url |
https://repositorio.ufpe.br/handle/123456789/25518 |
identifier_str_mv |
ark:/64986/001300000wbgs |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/25518/6/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/25518/1/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf https://repositorio.ufpe.br/bitstream/123456789/25518/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/25518/4/license_rdf https://repositorio.ufpe.br/bitstream/123456789/25518/5/DISSERTA%c3%87%c3%83O%20Danillo%20Barros%20de%20Souza.pdf.txt |
bitstream.checksum.fl_str_mv |
40355473234539882936dc97bfe4f4ac 6768e6fd189bd85a95913caab91d956c 4b8a02c7f2818eaf00dcf2260dd5eb08 e39d27027a6cc9cb039ad269a5db8e34 49cc82e6961d7ba3b1b19f8f90d55c5c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172933088182272 |