Embedded object detection and position estimation for RoboCup Small Size League
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000001kc7 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/51390 |
Resumo: | In the RoboCup Small Size League (SSL), there is the challenge of giving more autonomy to the robots, so they can perform some tasks without receiving any external information. To achieve this autonomy, the robot has to detect and estimate the position of other objects on the field so it can score goals and move without colliding with other robots. Object detection models often use monocular images as the input, but calculating the relative position of an object given a monocular image is quite challenging as the image doesn’t have any information on the object’s distance. The main objective of this work is to propose a complete system to detect an object on the field and locate it using only a monocular image as the input. The first obstacle to producing a model to object detection in a specific context is to have a dataset labeling the desired classes. In RoboCup, some leagues already have more than one dataset to train and evaluate a model. Thus, this work presents an open-source dataset to be used as a benchmark for real-time object detection in SSL. Using this dataset, this work also presents a pipeline to train, deploy, and evaluate Convolutional Neural Networks (CNNs) models to detect objects in an embedded system. Combining this object detection model with the global position received from the SSL-Vision, this work proposes a Multilayer Perceptron (MLP) architecture to estimate the position of the objects giving just an image as the input. In the object detection dataset, the MobileNet v1 SSD achieves 44.88% AP for the three detected classes at 94 Frames Per Second (FPS) while running on a SSL robot. And the position estimator for a detected ball achieves a Root Mean Square Error (RMSE) of 34.88mm. |
id |
UFPE_c4fe6e17495b190af2acada6a6542a9a |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/51390 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
FERNANDES, Roberto Costahttp://lattes.cnpq.br/6942505817036772http://lattes.cnpq.br/6291354144339437BARROS, Edna Natividade da Silva2023-07-05T12:19:01Z2023-07-05T12:19:01Z2023-03-15FERNANDES, Roberto Costa. Embedded object detection and position estimation for RoboCup Small Size League. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/51390ark:/64986/0013000001kc7In the RoboCup Small Size League (SSL), there is the challenge of giving more autonomy to the robots, so they can perform some tasks without receiving any external information. To achieve this autonomy, the robot has to detect and estimate the position of other objects on the field so it can score goals and move without colliding with other robots. Object detection models often use monocular images as the input, but calculating the relative position of an object given a monocular image is quite challenging as the image doesn’t have any information on the object’s distance. The main objective of this work is to propose a complete system to detect an object on the field and locate it using only a monocular image as the input. The first obstacle to producing a model to object detection in a specific context is to have a dataset labeling the desired classes. In RoboCup, some leagues already have more than one dataset to train and evaluate a model. Thus, this work presents an open-source dataset to be used as a benchmark for real-time object detection in SSL. Using this dataset, this work also presents a pipeline to train, deploy, and evaluate Convolutional Neural Networks (CNNs) models to detect objects in an embedded system. Combining this object detection model with the global position received from the SSL-Vision, this work proposes a Multilayer Perceptron (MLP) architecture to estimate the position of the objects giving just an image as the input. In the object detection dataset, the MobileNet v1 SSD achieves 44.88% AP for the three detected classes at 94 Frames Per Second (FPS) while running on a SSL robot. And the position estimator for a detected ball achieves a Root Mean Square Error (RMSE) of 34.88mm.CNPqA categoria Small Size League (SSL) da RoboCup tem o desafio de aumentar o nível de autonomia dos robôs para que eles possam realizar algumas tarefas sem receber nenhuma informação externa. Para garantir essa autonomia o robô tem que ser capaz de detectar e estimar a posição dos objetos no campo, para que ele possa marcar gols e se movimentar sem colidir com outros robôs. Modelos para detecção de objetos geralmente utilizam imagens monoculares como entrada, no entanto é desafiante calcular a posição relativa desses objetos, já que a imagem monocular não tem nenhuma informação da distância. O principal objetivo dessa dissertação é propor um sistema completo para detectar um objeto e calcular sua posição relativa no campo, usando uma imagem monocular como entrada. O primeiro obstáculo para treinar um modelo para detectar objetos em um contexto específico é ter um dataset de treinamento com imagens anotadas. Outras categorias da RoboCup já possuem dataset com imagens anotadas para treinar e avaliar um modelo. Assim, esse trabalho também propõe um dataset para a categoria SSL para ser usado como referência de comparação para detecção de objetos nessa categoria. Utilizando esse dataset, esse trabalho apresenta um fluxo para treinar, avaliar e realizar a inferência de uma Convolutional Neural Networks (CNNs) para detecção de objetos em um sistema embarcado. Combinando a detecção de objetos com a posição global recebida do SSL-Vision, esse trabalho ainda propõe uma arquitetura baseada em Multilayer Perceptron (MLP) para estimar a posição dos objetos usando somente a imagem monocular como entrada. Na detecção de objetos, o modelo MobileNet v1 SSD alcançou 55.77% AP para as três classes de interesse rodando a 94 Frames Per Second (FPS) em um robô de SSL. O modelo para estimar a posição de um objeto da classe Bola atingiu um Root Mean Square Error (RMSE) de 34.88mm.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia da computaçãoRobóticaRoboCupEmbedded object detection and position estimation for RoboCup Small Size Leagueinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETEXTDISSERTAÇÃO Roberto Costa Fernandes.pdf.txtDISSERTAÇÃO Roberto Costa Fernandes.pdf.txtExtracted texttext/plain135827https://repositorio.ufpe.br/bitstream/123456789/51390/4/DISSERTA%c3%87%c3%83O%20Roberto%20Costa%20Fernandes.pdf.txtc212afd343272083002c76306dccc412MD54THUMBNAILDISSERTAÇÃO Roberto Costa Fernandes.pdf.jpgDISSERTAÇÃO Roberto Costa Fernandes.pdf.jpgGenerated Thumbnailimage/jpeg1241https://repositorio.ufpe.br/bitstream/123456789/51390/5/DISSERTA%c3%87%c3%83O%20Roberto%20Costa%20Fernandes.pdf.jpg4d0b00f17f97ea31ae7ff4f7dbc563c0MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/51390/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52ORIGINALDISSERTAÇÃO Roberto Costa Fernandes.pdfDISSERTAÇÃO Roberto Costa Fernandes.pdfapplication/pdf5741571https://repositorio.ufpe.br/bitstream/123456789/51390/1/DISSERTA%c3%87%c3%83O%20Roberto%20Costa%20Fernandes.pdf2e34fa8c9c256c6fff76021d0a96c199MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/51390/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53123456789/513902023-07-06 02:42:11.501oai:repositorio.ufpe.br:123456789/51390VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-07-06T05:42:11Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Embedded object detection and position estimation for RoboCup Small Size League |
title |
Embedded object detection and position estimation for RoboCup Small Size League |
spellingShingle |
Embedded object detection and position estimation for RoboCup Small Size League FERNANDES, Roberto Costa Engenharia da computação Robótica RoboCup |
title_short |
Embedded object detection and position estimation for RoboCup Small Size League |
title_full |
Embedded object detection and position estimation for RoboCup Small Size League |
title_fullStr |
Embedded object detection and position estimation for RoboCup Small Size League |
title_full_unstemmed |
Embedded object detection and position estimation for RoboCup Small Size League |
title_sort |
Embedded object detection and position estimation for RoboCup Small Size League |
author |
FERNANDES, Roberto Costa |
author_facet |
FERNANDES, Roberto Costa |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6942505817036772 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/6291354144339437 |
dc.contributor.author.fl_str_mv |
FERNANDES, Roberto Costa |
dc.contributor.advisor1.fl_str_mv |
BARROS, Edna Natividade da Silva |
contributor_str_mv |
BARROS, Edna Natividade da Silva |
dc.subject.por.fl_str_mv |
Engenharia da computação Robótica RoboCup |
topic |
Engenharia da computação Robótica RoboCup |
description |
In the RoboCup Small Size League (SSL), there is the challenge of giving more autonomy to the robots, so they can perform some tasks without receiving any external information. To achieve this autonomy, the robot has to detect and estimate the position of other objects on the field so it can score goals and move without colliding with other robots. Object detection models often use monocular images as the input, but calculating the relative position of an object given a monocular image is quite challenging as the image doesn’t have any information on the object’s distance. The main objective of this work is to propose a complete system to detect an object on the field and locate it using only a monocular image as the input. The first obstacle to producing a model to object detection in a specific context is to have a dataset labeling the desired classes. In RoboCup, some leagues already have more than one dataset to train and evaluate a model. Thus, this work presents an open-source dataset to be used as a benchmark for real-time object detection in SSL. Using this dataset, this work also presents a pipeline to train, deploy, and evaluate Convolutional Neural Networks (CNNs) models to detect objects in an embedded system. Combining this object detection model with the global position received from the SSL-Vision, this work proposes a Multilayer Perceptron (MLP) architecture to estimate the position of the objects giving just an image as the input. In the object detection dataset, the MobileNet v1 SSD achieves 44.88% AP for the three detected classes at 94 Frames Per Second (FPS) while running on a SSL robot. And the position estimator for a detected ball achieves a Root Mean Square Error (RMSE) of 34.88mm. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-07-05T12:19:01Z |
dc.date.available.fl_str_mv |
2023-07-05T12:19:01Z |
dc.date.issued.fl_str_mv |
2023-03-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FERNANDES, Roberto Costa. Embedded object detection and position estimation for RoboCup Small Size League. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/51390 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000001kc7 |
identifier_str_mv |
FERNANDES, Roberto Costa. Embedded object detection and position estimation for RoboCup Small Size League. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023. ark:/64986/0013000001kc7 |
url |
https://repositorio.ufpe.br/handle/123456789/51390 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/51390/4/DISSERTA%c3%87%c3%83O%20Roberto%20Costa%20Fernandes.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/51390/5/DISSERTA%c3%87%c3%83O%20Roberto%20Costa%20Fernandes.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/51390/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/51390/1/DISSERTA%c3%87%c3%83O%20Roberto%20Costa%20Fernandes.pdf https://repositorio.ufpe.br/bitstream/123456789/51390/3/license.txt |
bitstream.checksum.fl_str_mv |
c212afd343272083002c76306dccc412 4d0b00f17f97ea31ae7ff4f7dbc563c0 e39d27027a6cc9cb039ad269a5db8e34 2e34fa8c9c256c6fff76021d0a96c199 5e89a1613ddc8510c6576f4b23a78973 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172691548700672 |