High performance Ginzburg-Landau simulations of superconductivity

Detalhes bibliográficos
Autor(a) principal: STOSIC, Darko
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
Texto Completo: https://repositorio.ufpe.br/handle/123456789/31433
Resumo: Superconductivity is one of the most important discoveries of the last century. With many applications in physics, engineering, and technology, superconductors are crucial to our way of living. Several material and engineering issues however prevent their widespread usage in everyday life. Comprehensive studies are being directed at these materials and their properties to come up with new technologies that will address these challenges and enhance their superconductive capabilities. In this context, numerical modeling plays an important role in the search of new solutions to existing material and engineering issues. The time-dependent Ginzburg-Landau (TDGL) theory is a powerful predictive tool for modeling the macroscopic behavior of superconductors. However most of the numerical algorithms developed so far are incapable of describing many basic properties of real superconducting devices, and are too slow on current hardware for large-scale numerical simulations necessary for their accurate description. Therefore, the purpose of this thesis is to develop high-performing numerical solutions that can correctly describe material features to be used as modeling tools of laboratory experiments. Some important innovations introduced in this work include the numerical modeling of nonrectangular geometrical shapes with complex electrical and insulating components, the inclusion of dynamic heating of the material, and the description of different types of material inhomogeneities. These encompass the principal features necessary for a complete description of the superconductive physics in real material samples. In this thesis a numerical solution is developed for modeling superconducting thin films and used to study the superconductive properties of three experimental configurations: the dynamics of vortex matter in a Corbino disk, the motion of ultrafast vortices in an hourglass-shaped microbridge, and the photon detection process in a meander-patterned nanowire. Moreover, a numerical solution is developed for modeling three-dimensional superconductors which are studied here for the first time in the type-I superconducting regime. These numerical algorithms are optimized to exploit the computational horsepower of graphics processing units (GPUs) and multicore central-processing unit (CPU) clusters such that they can achieve high-performance and be used to model large-scale problems previously impossible on conventional machines. Several computational tools are also designed to assist with the modeling of superconducting devices. These include a numerical library of the TDGL equations, a novel mechanism for the generation of complex geometries, a closed-form solver to conduct numerical simulations, and a graphics user interface (GUI) to visualize the dynamic behavior of superconductors. The contributions in this thesis ultimately push the boundaries on what is possible in state-of-the-art numerical modeling of superconductivity.
id UFPE_c65a4feaa214e6740d325975b781b67c
oai_identifier_str oai:repositorio.ufpe.br:123456789/31433
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling STOSIC, Darkohttp://lattes.cnpq.br/2008616513523132http://lattes.cnpq.br/6321179168854922LUDERMIR, Teresa Bernarda2019-07-11T19:25:31Z2019-07-11T19:25:31Z2018-05-02https://repositorio.ufpe.br/handle/123456789/31433Superconductivity is one of the most important discoveries of the last century. With many applications in physics, engineering, and technology, superconductors are crucial to our way of living. Several material and engineering issues however prevent their widespread usage in everyday life. Comprehensive studies are being directed at these materials and their properties to come up with new technologies that will address these challenges and enhance their superconductive capabilities. In this context, numerical modeling plays an important role in the search of new solutions to existing material and engineering issues. The time-dependent Ginzburg-Landau (TDGL) theory is a powerful predictive tool for modeling the macroscopic behavior of superconductors. However most of the numerical algorithms developed so far are incapable of describing many basic properties of real superconducting devices, and are too slow on current hardware for large-scale numerical simulations necessary for their accurate description. Therefore, the purpose of this thesis is to develop high-performing numerical solutions that can correctly describe material features to be used as modeling tools of laboratory experiments. Some important innovations introduced in this work include the numerical modeling of nonrectangular geometrical shapes with complex electrical and insulating components, the inclusion of dynamic heating of the material, and the description of different types of material inhomogeneities. These encompass the principal features necessary for a complete description of the superconductive physics in real material samples. In this thesis a numerical solution is developed for modeling superconducting thin films and used to study the superconductive properties of three experimental configurations: the dynamics of vortex matter in a Corbino disk, the motion of ultrafast vortices in an hourglass-shaped microbridge, and the photon detection process in a meander-patterned nanowire. Moreover, a numerical solution is developed for modeling three-dimensional superconductors which are studied here for the first time in the type-I superconducting regime. These numerical algorithms are optimized to exploit the computational horsepower of graphics processing units (GPUs) and multicore central-processing unit (CPU) clusters such that they can achieve high-performance and be used to model large-scale problems previously impossible on conventional machines. Several computational tools are also designed to assist with the modeling of superconducting devices. These include a numerical library of the TDGL equations, a novel mechanism for the generation of complex geometries, a closed-form solver to conduct numerical simulations, and a graphics user interface (GUI) to visualize the dynamic behavior of superconductors. The contributions in this thesis ultimately push the boundaries on what is possible in state-of-the-art numerical modeling of superconductivity.FACEPEA supercondutividade é uma das descobertas mais importantes do século passado. Com muitas aplicações em física, engenharia e tecnologia, os supercondutores são cruciais para nosso modo de vida. Diversos problemas materiais e de engenharia, no entanto, ainda impedem seu uso amplo na vida cotidiana. Estudos abrangentes estão sendo direcionados a esses materiais e suas propriedades para desenvolver novas tecnologias que abordem esses desafios, e aprimorem suas capacidades supercondutivas. Neste contexto, modelagem numérica desempenha um papel importante na busca de novas soluções para existentes problemas materiais e questões de engenharia. A teoria de Ginzburg-Landau dependente do tempo (TDGL) é uma poderosa ferramenta de previsão para modelar o comportamento macroscópico dos supercondutores. No entanto, a maioria dos algoritmos numéricos desenvolvidos até agora são incapazes de descrever muitas propriedades básicas de dispositivos supercondutores reais, e são lentos demais para simulações de grande escala no hardware atual, necessárias para sua descrição com precisão. Portanto, o objetivo desta tese é desenvolver soluções numéricas de alto desempenho que descrevam corretamente as características do material, à ser usadas como ferramentas de modelagem de experimentos de laboratório. Algumas inovações importantes introduzidas neste trabalho incluem a modelagem numérica de formas geométricas não retangulares com componentes elétricos e isolantes complexos, a inclusão de aquecimento dinâmico do material e a descrição de diferentes tipos de inhomogeneidade de materiais. Estes englobam as características principais necessárias para uma descrição completa da física supercondutora em amostras de materiais reais. Nesta tese é desenvolvida uma solução numérica para modelagem de filmes finos supercondutores e utilizada para estudar as propriedades supercondutoras de três configurações experimentais: a dinâmica da matéria em vórtice em um disco Corbino, o movimento de vórtices ultra-rápidos em uma microbridge em forma de ampulheta, e o processo de detecção de fótons em um nanofio com forma de meandro. Além disso, uma solução numérica é desenvolvida para modelar supercondutores tridimensionais, que aqui são estudados pela primeira vez no regime supercondutor tipo I. Esses algoritmos numéricos são otimizados para utilizar a potência computacional de unidades de processamento gráficos (GPUs) e clusters de unidades centrais de processamento (CPU) com múltiplos núcleos, de modo que possam atingir alto desempenho e ser usados para modelar problemas em larga escala que anteriormente não eram passíveis de modelagem em máquinas convencionais. Várias ferramentas computacionais também são desenvolvidas para auxiliar na modelagem de dispositivos supercondutores. Estes incluem uma biblioteca numérica das equações TDGL, um novo mecanismo para a geração de geometrias complexas, uma solução computacional para conduzir simulações numéricas, e uma interface de usuário gráfico (GUI) para visualizar o comportamento dinâmico de supercondutores. As contribuições nesta tese movem as fronteiras sobre o que é possível na modelagem numérica da supercondutividade.Supergeleiding is een van de belangrijkste ontdekkingen van de vorige eeuw. Met veel toepassingen in de natuurkunde, techniek en technologie zijn supergeleiders cruciaal voor onze manier van leven. Verschillende materiële en technische problemen verhinderen echter hun wijdverspreide gebruik in het dagelijks leven. Uitgebreide studies worden gericht op deze materialen en hun eigenschappen om met nieuwe technologieën te komen die deze uitdagingen zullen aanpakken en hun supergeleidende mogelijkheden zullen verbeteren. In deze context speelt numerieke modellering een belangrijke rol bij het zoeken naar nieuwe oplossingen voor bestaande materiaalen engineeringkwesties. De tijdafhankelijke Ginzburg-Landau-theorie is een krachtig voorspellend hulpmiddel voor het modelleren van het macroscopische gedrag van supergeleiders. De meeste van de tot nu toe ontwikkelde numerieke algoritmen zijn echter niet in staat om veel basiseigenschappen van echte supergeleidende apparaten te beschrijven en zijn te traag op de huidige hardware voor grootschalige numerieke simulaties die noodzakelijk zijn voor hun nauwkeurige beschrijving. Daarom is het doel van dit proefschrift om goed presterende numerieke oplossingen te ontwikkelen die materiaalkenmerken correct kunnen beschrijven die als modelleerhulpmiddelen voor laboratoriumexperimenten kunnen worden gebruikt. Enkele belangrijke innovaties die in dit werk zijn geïntroduceerd zijn de numerieke modellering van niet-rechthoekige geometrische vormen met complexe elektrische en isolerende componenten, de opname van dynamische verwarming van het materiaal en de beschrijving van verschillende soorten inhomogeniteiten in het materiaal. Deze omvatten de belangrijkste kenmerken die nodig zijn voor een volledige beschrijving van de supergeleidende fysica in reële materiaalmonsters. In dit proefschrift wordt een numerieke oplossing ontwikkeld voor het modelleren van supergeleidende dunne films en gebruikt om de supergeleidende eigenschappen van drie experimentele configuraties te bestuderen: de dynamiek van vortex materie in een Corbino schijf, de beweging van ultrasnelle wervels in een zandloper-vormige microbrug en het foton detectieproces in een nanodraad met meanderpatroon. Bovendien is een numerieke oplossing ontwikkeld voor het modelleren van driedimensionale supergeleiders die hier voor het eerst worden bestudeerd in het type-I supergeleidende regime. Deze numerieke algoritmen zijn geoptimaliseerd om de rekenkracht van GPU’s en multicore CPU-clusters te benutten, zodat ze hoge prestaties kunnen leveren en kunnen worden gebruikt voor het modelleren van grootschalige problemen die voorheen niet mogelijk waren op conventionele machines. Verschillende computerhulpmiddelen zijn ook ontworpen om te helpen bij het modelleren van supergeleidende apparaten. Deze omvatten een numerieke bibliotheek van de TDGL-vergelijkingen, een nieuw mechanisme voor het genereren van complexe geometrieën, een oplosser in gesloten vorm voor het uitvoeren van numerieke simulaties en een grafische gebruikersinterface om het dynamische gedrag van supergeleiders te visualiseren. De bijdragen in dit proefschrift verleggen uiteindelijk de grenzen van wat mogelijk is in state-of-the-art numerieke modellering van supergeleiding.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência artificialSupercondutividadeHigh performance Ginzburg-Landau simulations of superconductivityinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Darko Stosic.pdf.jpgTESE Darko Stosic.pdf.jpgGenerated Thumbnailimage/jpeg1214https://repositorio.ufpe.br/bitstream/123456789/31433/6/TESE%20Darko%20Stosic.pdf.jpgcb54080078ea53a8677499a9e2b2b192MD56ORIGINALTESE Darko Stosic.pdfTESE Darko Stosic.pdfapplication/pdf10599157https://repositorio.ufpe.br/bitstream/123456789/31433/1/TESE%20Darko%20Stosic.pdf081f20f6ed197d465ac6a8ffff81ca95MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/31433/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/31433/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTTESE Darko Stosic.pdf.txtTESE Darko Stosic.pdf.txtExtracted texttext/plain377087https://repositorio.ufpe.br/bitstream/123456789/31433/5/TESE%20Darko%20Stosic.pdf.txt7203179fe12915430c24fa1c56f2fb06MD55123456789/314332019-10-26 02:38:55.527oai:repositorio.ufpe.br:123456789/31433TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-26T05:38:55Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv High performance Ginzburg-Landau simulations of superconductivity
title High performance Ginzburg-Landau simulations of superconductivity
spellingShingle High performance Ginzburg-Landau simulations of superconductivity
STOSIC, Darko
Inteligência artificial
Supercondutividade
title_short High performance Ginzburg-Landau simulations of superconductivity
title_full High performance Ginzburg-Landau simulations of superconductivity
title_fullStr High performance Ginzburg-Landau simulations of superconductivity
title_full_unstemmed High performance Ginzburg-Landau simulations of superconductivity
title_sort High performance Ginzburg-Landau simulations of superconductivity
author STOSIC, Darko
author_facet STOSIC, Darko
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2008616513523132
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6321179168854922
dc.contributor.author.fl_str_mv STOSIC, Darko
dc.contributor.advisor1.fl_str_mv LUDERMIR, Teresa Bernarda
contributor_str_mv LUDERMIR, Teresa Bernarda
dc.subject.por.fl_str_mv Inteligência artificial
Supercondutividade
topic Inteligência artificial
Supercondutividade
description Superconductivity is one of the most important discoveries of the last century. With many applications in physics, engineering, and technology, superconductors are crucial to our way of living. Several material and engineering issues however prevent their widespread usage in everyday life. Comprehensive studies are being directed at these materials and their properties to come up with new technologies that will address these challenges and enhance their superconductive capabilities. In this context, numerical modeling plays an important role in the search of new solutions to existing material and engineering issues. The time-dependent Ginzburg-Landau (TDGL) theory is a powerful predictive tool for modeling the macroscopic behavior of superconductors. However most of the numerical algorithms developed so far are incapable of describing many basic properties of real superconducting devices, and are too slow on current hardware for large-scale numerical simulations necessary for their accurate description. Therefore, the purpose of this thesis is to develop high-performing numerical solutions that can correctly describe material features to be used as modeling tools of laboratory experiments. Some important innovations introduced in this work include the numerical modeling of nonrectangular geometrical shapes with complex electrical and insulating components, the inclusion of dynamic heating of the material, and the description of different types of material inhomogeneities. These encompass the principal features necessary for a complete description of the superconductive physics in real material samples. In this thesis a numerical solution is developed for modeling superconducting thin films and used to study the superconductive properties of three experimental configurations: the dynamics of vortex matter in a Corbino disk, the motion of ultrafast vortices in an hourglass-shaped microbridge, and the photon detection process in a meander-patterned nanowire. Moreover, a numerical solution is developed for modeling three-dimensional superconductors which are studied here for the first time in the type-I superconducting regime. These numerical algorithms are optimized to exploit the computational horsepower of graphics processing units (GPUs) and multicore central-processing unit (CPU) clusters such that they can achieve high-performance and be used to model large-scale problems previously impossible on conventional machines. Several computational tools are also designed to assist with the modeling of superconducting devices. These include a numerical library of the TDGL equations, a novel mechanism for the generation of complex geometries, a closed-form solver to conduct numerical simulations, and a graphics user interface (GUI) to visualize the dynamic behavior of superconductors. The contributions in this thesis ultimately push the boundaries on what is possible in state-of-the-art numerical modeling of superconductivity.
publishDate 2018
dc.date.issued.fl_str_mv 2018-05-02
dc.date.accessioned.fl_str_mv 2019-07-11T19:25:31Z
dc.date.available.fl_str_mv 2019-07-11T19:25:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/31433
url https://repositorio.ufpe.br/handle/123456789/31433
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/31433/6/TESE%20Darko%20Stosic.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/31433/1/TESE%20Darko%20Stosic.pdf
https://repositorio.ufpe.br/bitstream/123456789/31433/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/31433/4/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/31433/5/TESE%20Darko%20Stosic.pdf.txt
bitstream.checksum.fl_str_mv cb54080078ea53a8677499a9e2b2b192
081f20f6ed197d465ac6a8ffff81ca95
4b8a02c7f2818eaf00dcf2260dd5eb08
e39d27027a6cc9cb039ad269a5db8e34
7203179fe12915430c24fa1c56f2fb06
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1802310729025454080