Tamanho finito em criticalidade Lifshitz
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000kfxn |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/11141 |
Resumo: | Atrav es da utiliza c~ao de uma teoria de campo escalar representada no espa co dos momentos, vamos estudar os efeitos do tamanho nito no comportamento cr tico de sistemas competitivos m-axiais com d dimens~oes em uma geometria cujas superf cies delimitadoras s~ao placas planas e paralelas. Tais placas s~ao de extens~ao in nita e s~ao separadas por uma dist^ancia L. O par^ametro de ordem estar a sujeito a condi c~oes de contorno peri odicas ou antiperi odicas ao longo das duas superf cies. Ambas as formula c~oes com campos massivos e n~ao-massivos ser~ao aplicadas a m de obter os expoentes cr ticos respectivamente nos limites de escalamento ultravioleta e infravermelho, que s~ao necess arios a descri c~ao das regi~oes de escala presentes em sistemas com tamanho nito. Come caremos analisando sistemas sem competi c~ao (m = 0). Vamos introduzir uma nova descri c~ao para os regimes de \crossover" dimensional usuais relacionados com as regi~oes de escala. Desde que evitemos esse \crossover", caracterizado apenas por valores pequenos de L, calcularemos os expoentes e perturbativamente at e as respectivas ordens de dois e tr^es loops e veremos que eles s~ao id^enticos aos de um sistema in nito (L ! 1). Em seguida, vamos estender o nosso m etodo de an alise do tamanho nito para sistemas competitivos m-axiais no ponto cr tico de Lifshitz. Em uma abordagem inicial, consideraremos nita uma das dire c~oes ao longo do subespa co sem competi c~ao e observaremos um comportamento semelhante com rela c~ao ao \crossover" dimensional de sistemas n~ao-competitivos. Para L su cientemente grande, calcularemos os expoentes cr ticos L2, L2, L4 e L4 at e ordens de pelo menos dois loops com aux lio de uma aproxima c~ao especial para a regulariza c~ao das integrais de Feynman. Tais expoentes ser~ao id^enticos aos do sistema in nito. O pr oximo passo consiste em tornar nita a dire c~ao ao longo do eixo de competi c~ao em um sistema uniaxial (m = 1). Utilizaremos nessa con gura c~ao uma nova representa c~ao para as integrais de Feynman e, evitando a regi~ao de \crossover", calcularemos de forma exata at e ordens de dois loops os expoentes L2 e L2. Os nossos resultados ser~ao comparados com os expoentes obtidos por m etodos aproximados e por simula c~oes de Monte Carlo presentes na literatura. |
id |
UFPE_c90ef103edfa4c927c6ec901559f8c4c |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/11141 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Silva Júnior, José Borba daLeite, Marcelo de Moura 2015-03-06T14:20:34Z2015-03-06T14:20:34Z2012-01-31https://repositorio.ufpe.br/handle/123456789/11141ark:/64986/001300000kfxnAtrav es da utiliza c~ao de uma teoria de campo escalar representada no espa co dos momentos, vamos estudar os efeitos do tamanho nito no comportamento cr tico de sistemas competitivos m-axiais com d dimens~oes em uma geometria cujas superf cies delimitadoras s~ao placas planas e paralelas. Tais placas s~ao de extens~ao in nita e s~ao separadas por uma dist^ancia L. O par^ametro de ordem estar a sujeito a condi c~oes de contorno peri odicas ou antiperi odicas ao longo das duas superf cies. Ambas as formula c~oes com campos massivos e n~ao-massivos ser~ao aplicadas a m de obter os expoentes cr ticos respectivamente nos limites de escalamento ultravioleta e infravermelho, que s~ao necess arios a descri c~ao das regi~oes de escala presentes em sistemas com tamanho nito. Come caremos analisando sistemas sem competi c~ao (m = 0). Vamos introduzir uma nova descri c~ao para os regimes de \crossover" dimensional usuais relacionados com as regi~oes de escala. Desde que evitemos esse \crossover", caracterizado apenas por valores pequenos de L, calcularemos os expoentes e perturbativamente at e as respectivas ordens de dois e tr^es loops e veremos que eles s~ao id^enticos aos de um sistema in nito (L ! 1). Em seguida, vamos estender o nosso m etodo de an alise do tamanho nito para sistemas competitivos m-axiais no ponto cr tico de Lifshitz. Em uma abordagem inicial, consideraremos nita uma das dire c~oes ao longo do subespa co sem competi c~ao e observaremos um comportamento semelhante com rela c~ao ao \crossover" dimensional de sistemas n~ao-competitivos. Para L su cientemente grande, calcularemos os expoentes cr ticos L2, L2, L4 e L4 at e ordens de pelo menos dois loops com aux lio de uma aproxima c~ao especial para a regulariza c~ao das integrais de Feynman. Tais expoentes ser~ao id^enticos aos do sistema in nito. O pr oximo passo consiste em tornar nita a dire c~ao ao longo do eixo de competi c~ao em um sistema uniaxial (m = 1). Utilizaremos nessa con gura c~ao uma nova representa c~ao para as integrais de Feynman e, evitando a regi~ao de \crossover", calcularemos de forma exata at e ordens de dois loops os expoentes L2 e L2. Os nossos resultados ser~ao comparados com os expoentes obtidos por m etodos aproximados e por simula c~oes de Monte Carlo presentes na literatura.CNPq; FACEPEporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFenômenos cr ticosTeoria de campoTamanho fi nitopontos de LifshitzTamanho finito em criticalidade Lifshitzinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILBorba-Tese.pdf.jpgBorba-Tese.pdf.jpgGenerated Thumbnailimage/jpeg1396https://repositorio.ufpe.br/bitstream/123456789/11141/5/Borba-Tese.pdf.jpg4eb516cf342c47a47f7d856955ff208bMD55ORIGINALBorba-Tese.pdfBorba-Tese.pdfapplication/pdf1333179https://repositorio.ufpe.br/bitstream/123456789/11141/1/Borba-Tese.pdf96c554cc5271892d1ae4d75b520d7c24MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/11141/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/11141/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTBorba-Tese.pdf.txtBorba-Tese.pdf.txtExtracted texttext/plain388584https://repositorio.ufpe.br/bitstream/123456789/11141/4/Borba-Tese.pdf.txt3f08b034ba8215812d894115d9dccd46MD54123456789/111412019-10-25 16:39:46.429oai:repositorio.ufpe.br:123456789/11141TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T19:39:46Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Tamanho finito em criticalidade Lifshitz |
title |
Tamanho finito em criticalidade Lifshitz |
spellingShingle |
Tamanho finito em criticalidade Lifshitz Silva Júnior, José Borba da Fenômenos cr ticos Teoria de campo Tamanho fi nito pontos de Lifshitz |
title_short |
Tamanho finito em criticalidade Lifshitz |
title_full |
Tamanho finito em criticalidade Lifshitz |
title_fullStr |
Tamanho finito em criticalidade Lifshitz |
title_full_unstemmed |
Tamanho finito em criticalidade Lifshitz |
title_sort |
Tamanho finito em criticalidade Lifshitz |
author |
Silva Júnior, José Borba da |
author_facet |
Silva Júnior, José Borba da |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva Júnior, José Borba da |
dc.contributor.advisor1.fl_str_mv |
Leite, Marcelo de Moura |
contributor_str_mv |
Leite, Marcelo de Moura |
dc.subject.por.fl_str_mv |
Fenômenos cr ticos Teoria de campo Tamanho fi nito pontos de Lifshitz |
topic |
Fenômenos cr ticos Teoria de campo Tamanho fi nito pontos de Lifshitz |
description |
Atrav es da utiliza c~ao de uma teoria de campo escalar representada no espa co dos momentos, vamos estudar os efeitos do tamanho nito no comportamento cr tico de sistemas competitivos m-axiais com d dimens~oes em uma geometria cujas superf cies delimitadoras s~ao placas planas e paralelas. Tais placas s~ao de extens~ao in nita e s~ao separadas por uma dist^ancia L. O par^ametro de ordem estar a sujeito a condi c~oes de contorno peri odicas ou antiperi odicas ao longo das duas superf cies. Ambas as formula c~oes com campos massivos e n~ao-massivos ser~ao aplicadas a m de obter os expoentes cr ticos respectivamente nos limites de escalamento ultravioleta e infravermelho, que s~ao necess arios a descri c~ao das regi~oes de escala presentes em sistemas com tamanho nito. Come caremos analisando sistemas sem competi c~ao (m = 0). Vamos introduzir uma nova descri c~ao para os regimes de \crossover" dimensional usuais relacionados com as regi~oes de escala. Desde que evitemos esse \crossover", caracterizado apenas por valores pequenos de L, calcularemos os expoentes e perturbativamente at e as respectivas ordens de dois e tr^es loops e veremos que eles s~ao id^enticos aos de um sistema in nito (L ! 1). Em seguida, vamos estender o nosso m etodo de an alise do tamanho nito para sistemas competitivos m-axiais no ponto cr tico de Lifshitz. Em uma abordagem inicial, consideraremos nita uma das dire c~oes ao longo do subespa co sem competi c~ao e observaremos um comportamento semelhante com rela c~ao ao \crossover" dimensional de sistemas n~ao-competitivos. Para L su cientemente grande, calcularemos os expoentes cr ticos L2, L2, L4 e L4 at e ordens de pelo menos dois loops com aux lio de uma aproxima c~ao especial para a regulariza c~ao das integrais de Feynman. Tais expoentes ser~ao id^enticos aos do sistema in nito. O pr oximo passo consiste em tornar nita a dire c~ao ao longo do eixo de competi c~ao em um sistema uniaxial (m = 1). Utilizaremos nessa con gura c~ao uma nova representa c~ao para as integrais de Feynman e, evitando a regi~ao de \crossover", calcularemos de forma exata at e ordens de dois loops os expoentes L2 e L2. Os nossos resultados ser~ao comparados com os expoentes obtidos por m etodos aproximados e por simula c~oes de Monte Carlo presentes na literatura. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-01-31 |
dc.date.accessioned.fl_str_mv |
2015-03-06T14:20:34Z |
dc.date.available.fl_str_mv |
2015-03-06T14:20:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/11141 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000kfxn |
url |
https://repositorio.ufpe.br/handle/123456789/11141 |
identifier_str_mv |
ark:/64986/001300000kfxn |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/11141/5/Borba-Tese.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/11141/1/Borba-Tese.pdf https://repositorio.ufpe.br/bitstream/123456789/11141/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/11141/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/11141/4/Borba-Tese.pdf.txt |
bitstream.checksum.fl_str_mv |
4eb516cf342c47a47f7d856955ff208b 96c554cc5271892d1ae4d75b520d7c24 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 3f08b034ba8215812d894115d9dccd46 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172847639724032 |