Recuperação de informação e classificação de entidades organizacionais em textos não estruturados

Detalhes bibliográficos
Autor(a) principal: Frutuoso, Danielle Guedes
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000dnws
Texto Completo: https://repositorio.ufpe.br/handle/123456789/14018
Resumo: A explosão de dados na internet deixou de ter foco apenas em grandes empresas para ser amplamente utilizada por usuários comuns. Esse crescimento elevado traz consigo grandes desafios em relação à disponibilização da informação. A natureza descentralizada e desestruturada na qual esses dados estão disponíveis, tornam a tarefa de encontrar, analisar e sintetizar comentários sobre uma dada empresa, produto ou serviço extremamente complicada, ocasionando resultados de baixa qualidade. Esta pesquisa tem como foco a extração de informação de textos livres gerados pela rede social Twitter, onde na maioria das vezes apresentam uma estrutura linguística irregular. Dentre os diversos trabalhos relacionados à extração de informação podemos destacar o Reconhecimento de Entidades Mencionadas (REM), cujo objetivo consiste em localizar e classificar elementos do texto em categorias pré-definidas como Organizações, Pessoas, Local, etc. Neste trabalho será considerada apenas a categoria Organização, com ênfase em palavras homônimas. O experimento deste trabalho foi dividido em dois cenários diferentes. Ambos utilizam as mesmas características, a diferença entre os cenários é que no primeiro exige o conhecimento do especialista para determinar todos os atributos considerados relevantes para o aprendizado supervisionado. No segundo cenário, um processo automatizado define parte desses atributos. Os experimentos foram realizados usando a ferramenta Weka onde foram avaliados os classificadores: Naive Bayes, Máquinas de Vetores de Suporte (SVM), K-Vizinhos mais Próximos e Árvores de Decisão. Como medidas de desempenho foram analisadas taxas de acerto, precisão, cobertura e medida-F. Apesar dos resultados apresentados pelos classificadores se mostrarem bastante aproximados, o algoritmo K-Vizinhos mais Próximos obteve em boa parte dos testes melhores resultados. Nos dois cenários os resultados chegaram próximos um do outro, porém o primeiro cenário obteve como resultado médio de acerto, um percentual de 91,7% se destacando em relação à média alcançada de 88,9% para a segunda etapa.
id UFPE_d01f1570e52080e0f194b7262278fced
oai_identifier_str oai:repositorio.ufpe.br:123456789/14018
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Frutuoso, Danielle GuedesPrudêncio, Ricardo Bastos Cavalcante 2015-05-21T18:24:45Z2015-05-21T18:24:45Z2014-04-28https://repositorio.ufpe.br/handle/123456789/14018ark:/64986/001300000dnwsA explosão de dados na internet deixou de ter foco apenas em grandes empresas para ser amplamente utilizada por usuários comuns. Esse crescimento elevado traz consigo grandes desafios em relação à disponibilização da informação. A natureza descentralizada e desestruturada na qual esses dados estão disponíveis, tornam a tarefa de encontrar, analisar e sintetizar comentários sobre uma dada empresa, produto ou serviço extremamente complicada, ocasionando resultados de baixa qualidade. Esta pesquisa tem como foco a extração de informação de textos livres gerados pela rede social Twitter, onde na maioria das vezes apresentam uma estrutura linguística irregular. Dentre os diversos trabalhos relacionados à extração de informação podemos destacar o Reconhecimento de Entidades Mencionadas (REM), cujo objetivo consiste em localizar e classificar elementos do texto em categorias pré-definidas como Organizações, Pessoas, Local, etc. Neste trabalho será considerada apenas a categoria Organização, com ênfase em palavras homônimas. O experimento deste trabalho foi dividido em dois cenários diferentes. Ambos utilizam as mesmas características, a diferença entre os cenários é que no primeiro exige o conhecimento do especialista para determinar todos os atributos considerados relevantes para o aprendizado supervisionado. No segundo cenário, um processo automatizado define parte desses atributos. Os experimentos foram realizados usando a ferramenta Weka onde foram avaliados os classificadores: Naive Bayes, Máquinas de Vetores de Suporte (SVM), K-Vizinhos mais Próximos e Árvores de Decisão. Como medidas de desempenho foram analisadas taxas de acerto, precisão, cobertura e medida-F. Apesar dos resultados apresentados pelos classificadores se mostrarem bastante aproximados, o algoritmo K-Vizinhos mais Próximos obteve em boa parte dos testes melhores resultados. Nos dois cenários os resultados chegaram próximos um do outro, porém o primeiro cenário obteve como resultado médio de acerto, um percentual de 91,7% se destacando em relação à média alcançada de 88,9% para a segunda etapa.porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessClassificação de textosReconhecimento de Entidades MencionadasEntidades OrganizacionaisRecuperação de informação e classificação de entidades organizacionais em textos não estruturadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDissertação Danielle Guedes Frutuoso.pdf.jpgDissertação Danielle Guedes Frutuoso.pdf.jpgGenerated Thumbnailimage/jpeg1310https://repositorio.ufpe.br/bitstream/123456789/14018/4/Disserta%c3%a7%c3%a3o%20Danielle%20Guedes%20Frutuoso.pdf.jpg194b440b16e806db7d1a2e42d9687d47MD54ORIGINALDissertação Danielle Guedes Frutuoso.pdfDissertação Danielle Guedes Frutuoso.pdfapplication/pdf1821107https://repositorio.ufpe.br/bitstream/123456789/14018/1/Disserta%c3%a7%c3%a3o%20Danielle%20Guedes%20Frutuoso.pdf27b0bc0583b46c7a6fc0b2951b6887f3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/14018/2/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD52TEXTDissertação Danielle Guedes Frutuoso.pdf.txtDissertação Danielle Guedes Frutuoso.pdf.txtExtracted texttext/plain138935https://repositorio.ufpe.br/bitstream/123456789/14018/3/Disserta%c3%a7%c3%a3o%20Danielle%20Guedes%20Frutuoso.pdf.txteb70ec4b5627e75bb217095ce7e36935MD53123456789/140182019-10-25 05:49:34.797oai:repositorio.ufpe.br:123456789/14018TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T08:49:34Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Recuperação de informação e classificação de entidades organizacionais em textos não estruturados
title Recuperação de informação e classificação de entidades organizacionais em textos não estruturados
spellingShingle Recuperação de informação e classificação de entidades organizacionais em textos não estruturados
Frutuoso, Danielle Guedes
Classificação de textos
Reconhecimento de Entidades Mencionadas
Entidades Organizacionais
title_short Recuperação de informação e classificação de entidades organizacionais em textos não estruturados
title_full Recuperação de informação e classificação de entidades organizacionais em textos não estruturados
title_fullStr Recuperação de informação e classificação de entidades organizacionais em textos não estruturados
title_full_unstemmed Recuperação de informação e classificação de entidades organizacionais em textos não estruturados
title_sort Recuperação de informação e classificação de entidades organizacionais em textos não estruturados
author Frutuoso, Danielle Guedes
author_facet Frutuoso, Danielle Guedes
author_role author
dc.contributor.author.fl_str_mv Frutuoso, Danielle Guedes
dc.contributor.advisor1.fl_str_mv Prudêncio, Ricardo Bastos Cavalcante
contributor_str_mv Prudêncio, Ricardo Bastos Cavalcante
dc.subject.por.fl_str_mv Classificação de textos
Reconhecimento de Entidades Mencionadas
Entidades Organizacionais
topic Classificação de textos
Reconhecimento de Entidades Mencionadas
Entidades Organizacionais
description A explosão de dados na internet deixou de ter foco apenas em grandes empresas para ser amplamente utilizada por usuários comuns. Esse crescimento elevado traz consigo grandes desafios em relação à disponibilização da informação. A natureza descentralizada e desestruturada na qual esses dados estão disponíveis, tornam a tarefa de encontrar, analisar e sintetizar comentários sobre uma dada empresa, produto ou serviço extremamente complicada, ocasionando resultados de baixa qualidade. Esta pesquisa tem como foco a extração de informação de textos livres gerados pela rede social Twitter, onde na maioria das vezes apresentam uma estrutura linguística irregular. Dentre os diversos trabalhos relacionados à extração de informação podemos destacar o Reconhecimento de Entidades Mencionadas (REM), cujo objetivo consiste em localizar e classificar elementos do texto em categorias pré-definidas como Organizações, Pessoas, Local, etc. Neste trabalho será considerada apenas a categoria Organização, com ênfase em palavras homônimas. O experimento deste trabalho foi dividido em dois cenários diferentes. Ambos utilizam as mesmas características, a diferença entre os cenários é que no primeiro exige o conhecimento do especialista para determinar todos os atributos considerados relevantes para o aprendizado supervisionado. No segundo cenário, um processo automatizado define parte desses atributos. Os experimentos foram realizados usando a ferramenta Weka onde foram avaliados os classificadores: Naive Bayes, Máquinas de Vetores de Suporte (SVM), K-Vizinhos mais Próximos e Árvores de Decisão. Como medidas de desempenho foram analisadas taxas de acerto, precisão, cobertura e medida-F. Apesar dos resultados apresentados pelos classificadores se mostrarem bastante aproximados, o algoritmo K-Vizinhos mais Próximos obteve em boa parte dos testes melhores resultados. Nos dois cenários os resultados chegaram próximos um do outro, porém o primeiro cenário obteve como resultado médio de acerto, um percentual de 91,7% se destacando em relação à média alcançada de 88,9% para a segunda etapa.
publishDate 2014
dc.date.issued.fl_str_mv 2014-04-28
dc.date.accessioned.fl_str_mv 2015-05-21T18:24:45Z
dc.date.available.fl_str_mv 2015-05-21T18:24:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/14018
dc.identifier.dark.fl_str_mv ark:/64986/001300000dnws
url https://repositorio.ufpe.br/handle/123456789/14018
identifier_str_mv ark:/64986/001300000dnws
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/14018/4/Disserta%c3%a7%c3%a3o%20Danielle%20Guedes%20Frutuoso.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/14018/1/Disserta%c3%a7%c3%a3o%20Danielle%20Guedes%20Frutuoso.pdf
https://repositorio.ufpe.br/bitstream/123456789/14018/2/license.txt
https://repositorio.ufpe.br/bitstream/123456789/14018/3/Disserta%c3%a7%c3%a3o%20Danielle%20Guedes%20Frutuoso.pdf.txt
bitstream.checksum.fl_str_mv 194b440b16e806db7d1a2e42d9687d47
27b0bc0583b46c7a6fc0b2951b6887f3
4b8a02c7f2818eaf00dcf2260dd5eb08
eb70ec4b5627e75bb217095ce7e36935
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172800441221120