Embarrassingly parallel autoconstructive multilayer perceptron neural networks

Detalhes bibliográficos
Autor(a) principal: FARIAS, Felipe Costa
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000grg6
Texto Completo: https://repositorio.ufpe.br/handle/123456789/48269
Resumo: The present thesis proposes a method to automatically construct Multilayer Per-ceptron Artificial Neural Networks (MLP) to help non-expert users to still create robust models without the need to worry about the best combination of the number of neurons and activation functions by using specific splitting strategies, training parallelization, and multi-criteria model selection techniques. In order to do that, a data splitting algorithm (Similarity Based Stratified Splitting) was developed to produce statistically similar splits in order to better explore the feature space and consequently train better models. These splits are used to independently train several MLPs with different architectures in parallel (ParallelMLPs), using a modified matrix multiplication that takes advantage of the principle of locality to speed up the training of these networks from 1 to 4 orders of magnitude in CPUs and GPUs, when compared to the sequential training of the same models. It allowed the evaluation of several architectures for the MLPs in a very short time to produce a pool with a considerable amount of complex models. Furthermore, we were able to analyze and propose optimality conditions of theoretical optimal models and use them to automatically define MLP architectures by performing a multi-criteria model selection, since choosing a single model from an immense pool is not a trivial task. The code will be available at <https://github.com/fariasfc/parallel-mlps>.
id UFPE_d4455fc7ca8776467a4b94a5f4b6a748
oai_identifier_str oai:repositorio.ufpe.br:123456789/48269
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling FARIAS, Felipe Costahttp://lattes.cnpq.br/4598958786544738http://lattes.cnpq.br/6321179168854922http://lattes.cnpq.br/9745937989094036LUDEMIR, Teresa BernardaBASTOS FILHO, Carmelo José Albanez2022-12-16T14:47:28Z2022-12-16T14:47:28Z2022-08-05FARIAS, Felipe Costa. Embarrassingly parallel autoconstructive multilayer perceptron neural networks. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/48269ark:/64986/001300000grg6The present thesis proposes a method to automatically construct Multilayer Per-ceptron Artificial Neural Networks (MLP) to help non-expert users to still create robust models without the need to worry about the best combination of the number of neurons and activation functions by using specific splitting strategies, training parallelization, and multi-criteria model selection techniques. In order to do that, a data splitting algorithm (Similarity Based Stratified Splitting) was developed to produce statistically similar splits in order to better explore the feature space and consequently train better models. These splits are used to independently train several MLPs with different architectures in parallel (ParallelMLPs), using a modified matrix multiplication that takes advantage of the principle of locality to speed up the training of these networks from 1 to 4 orders of magnitude in CPUs and GPUs, when compared to the sequential training of the same models. It allowed the evaluation of several architectures for the MLPs in a very short time to produce a pool with a considerable amount of complex models. Furthermore, we were able to analyze and propose optimality conditions of theoretical optimal models and use them to automatically define MLP architectures by performing a multi-criteria model selection, since choosing a single model from an immense pool is not a trivial task. The code will be available at <https://github.com/fariasfc/parallel-mlps>.A presente tese propõe um método para construir automaticamente Redes Neurais Artificiais Multilayer Perceptron (MLP) para ajudar os usuários não-especialistas a criar modelos robustos sem a necessidade de se preocupar com a melhor combinação do número de neurônios e funções de ativação, utilizando estratégias de particionamento de dados específicas, paralelização de treinamento e técnicas de seleção de modelos multicritério. Para isso, foi desenvolvido um algoritmo de particionamento de dados (Similarity Based Stratified Splitting) para produzir divisões estatisticamente semelhantes, a fim de explorar melhor o espaço de características e, conseqüentemente, treinar melhores modelos. Estas partições são usadas para treinar, de forma independente, várias MLPs com diferentes arquiteturas em paralelo (ParallelMLPs), usando uma multiplicação matricial modificada que faz uso do princípio da localidade para acelerar o treinamento destas redes de 1 a 4 ordens de magnitude em CPUs e GPUs, quando comparado ao treinamento seqüencial dos mesmos modelos. Isto permitiu a avaliação de várias arquiteturas de MLPs em um tempo muito curto para produzir um conjunto com uma quantidade considerável de modelos complexos. Além disso, pudemos analisar e propor condições de otimalidade de modelos ótimos teóricos, e usá-las para definir automaticamente arquiteturas de MLPs realizando uma seleção multi-critérios de modelos, uma vez que escolher um único modelo de um imenso conjunto não é uma tarefa trivial. O código estará disponível em <https://github. com/fariasfc/parallel-mlps>.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessInteligência computacionalRedes neuraisEmbarrassingly parallel autoconstructive multilayer perceptron neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/48269/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/48269/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53ORIGINALTESE Felipe Costa Farias.pdfTESE Felipe Costa Farias.pdfapplication/pdf2859239https://repositorio.ufpe.br/bitstream/123456789/48269/1/TESE%20Felipe%20Costa%20Farias.pdf428036db7606e5d4153cda34b9926b96MD51TEXTTESE Felipe Costa Farias.pdf.txtTESE Felipe Costa Farias.pdf.txtExtracted texttext/plain371408https://repositorio.ufpe.br/bitstream/123456789/48269/4/TESE%20Felipe%20Costa%20Farias.pdf.txt3c979f47faf8b1af71addac9ca4b7ca7MD54THUMBNAILTESE Felipe Costa Farias.pdf.jpgTESE Felipe Costa Farias.pdf.jpgGenerated Thumbnailimage/jpeg1212https://repositorio.ufpe.br/bitstream/123456789/48269/5/TESE%20Felipe%20Costa%20Farias.pdf.jpgc17b5d13f602cda53985e51e3cd08d8eMD55123456789/482692022-12-17 02:24:54.832oai:repositorio.ufpe.br:123456789/48269VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-12-17T05:24:54Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Embarrassingly parallel autoconstructive multilayer perceptron neural networks
title Embarrassingly parallel autoconstructive multilayer perceptron neural networks
spellingShingle Embarrassingly parallel autoconstructive multilayer perceptron neural networks
FARIAS, Felipe Costa
Inteligência computacional
Redes neurais
title_short Embarrassingly parallel autoconstructive multilayer perceptron neural networks
title_full Embarrassingly parallel autoconstructive multilayer perceptron neural networks
title_fullStr Embarrassingly parallel autoconstructive multilayer perceptron neural networks
title_full_unstemmed Embarrassingly parallel autoconstructive multilayer perceptron neural networks
title_sort Embarrassingly parallel autoconstructive multilayer perceptron neural networks
author FARIAS, Felipe Costa
author_facet FARIAS, Felipe Costa
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4598958786544738
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6321179168854922
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9745937989094036
dc.contributor.author.fl_str_mv FARIAS, Felipe Costa
dc.contributor.advisor1.fl_str_mv LUDEMIR, Teresa Bernarda
dc.contributor.advisor-co1.fl_str_mv BASTOS FILHO, Carmelo José Albanez
contributor_str_mv LUDEMIR, Teresa Bernarda
BASTOS FILHO, Carmelo José Albanez
dc.subject.por.fl_str_mv Inteligência computacional
Redes neurais
topic Inteligência computacional
Redes neurais
description The present thesis proposes a method to automatically construct Multilayer Per-ceptron Artificial Neural Networks (MLP) to help non-expert users to still create robust models without the need to worry about the best combination of the number of neurons and activation functions by using specific splitting strategies, training parallelization, and multi-criteria model selection techniques. In order to do that, a data splitting algorithm (Similarity Based Stratified Splitting) was developed to produce statistically similar splits in order to better explore the feature space and consequently train better models. These splits are used to independently train several MLPs with different architectures in parallel (ParallelMLPs), using a modified matrix multiplication that takes advantage of the principle of locality to speed up the training of these networks from 1 to 4 orders of magnitude in CPUs and GPUs, when compared to the sequential training of the same models. It allowed the evaluation of several architectures for the MLPs in a very short time to produce a pool with a considerable amount of complex models. Furthermore, we were able to analyze and propose optimality conditions of theoretical optimal models and use them to automatically define MLP architectures by performing a multi-criteria model selection, since choosing a single model from an immense pool is not a trivial task. The code will be available at <https://github.com/fariasfc/parallel-mlps>.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-12-16T14:47:28Z
dc.date.available.fl_str_mv 2022-12-16T14:47:28Z
dc.date.issued.fl_str_mv 2022-08-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FARIAS, Felipe Costa. Embarrassingly parallel autoconstructive multilayer perceptron neural networks. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/48269
dc.identifier.dark.fl_str_mv ark:/64986/001300000grg6
identifier_str_mv FARIAS, Felipe Costa. Embarrassingly parallel autoconstructive multilayer perceptron neural networks. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.
ark:/64986/001300000grg6
url https://repositorio.ufpe.br/handle/123456789/48269
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/48269/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/48269/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/48269/1/TESE%20Felipe%20Costa%20Farias.pdf
https://repositorio.ufpe.br/bitstream/123456789/48269/4/TESE%20Felipe%20Costa%20Farias.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/48269/5/TESE%20Felipe%20Costa%20Farias.pdf.jpg
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
428036db7606e5d4153cda34b9926b96
3c979f47faf8b1af71addac9ca4b7ca7
c17b5d13f602cda53985e51e3cd08d8e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172821069856768