Um cluster híbrido com módulos de co – processamento em hardware (FPGAS) para processamento de alto desempenho

Detalhes bibliográficos
Autor(a) principal: BARROS JÚNIOR, Severino José de
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000072h7
Texto Completo: https://repositorio.ufpe.br/handle/123456789/11839
Resumo: Organizações que lidam com sistemas computacionais buscam cada vez mais melhorar o desempenho de suas aplicações. Essas aplicações possuem como principal característica o processamento massivo de dados. A solução utilizada para execução desses problemas é baseada, em geral, em arquiteturas de processadores de uso geral, cuja principal característica é sua estrutura de hardware baseada no Paradigma de Von Neumann. Esse paradigma possui uma deficiência conhecida como “Gargalo de Von Neumann”, onde instruções que poderiam ser executadas de forma simultânea, devido à sua independência de dados, acabam sendo processadas sequencialmente, prejudicando o potencial desempenho dessa classe de aplicações. Para aumentar o processamento paralelo dos sistemas, as Organizações costumam adotar uma estrutura baseada na associação de vários PCs, conectados a uma rede de alta velocidade e trabalham em conjunto para resolver um grande problema. A essa associação é atribuída o nome de cluster, a qual cada integrante PC, chamado de nó, realiza uma parte da computação de um grande problema de forma simultânea, proporcionando a ideia de um paralelismo explícito da aplicação como um todo. Mesmo com um aumento significativo de elementos de processamento independentes, este crescimento é insuficiente para atender à enorme quantidade de demanda de computação de dados em aplicações complexas. Ela exige uma divisão de grupos de instruções independentes, distribuídos entre os nós. Esta estratégia dá a idéia de paralelismo e assim um melhor desempenho. No entanto, o desempenho em cada nó permanece degradado, devido ao estrangulamento seqüencial presente nós processadores. A fim de aumentar o paralelismo das operações em cada nó, soluções híbridas, compostas por CPUs convencionais e coprocessadores foram adotadas. Um desses coprocessadores é o FPGA (Field Programmable Gate Array), que geralmente é conectado ao PC através do barramento PCIe. O projeto descrito na dissertação propõe uma metodologia de desenvolvimento para este aglomerado híbrido, de modo a aumentar o desempenho de aplicações científicas que requerem uma grande quantidade de processamento de dados. A metodologia é apresentada e dois exemplos são discutidos em detalhes.
id UFPE_d5b5c6b85f4167afdaaaf51973335a4e
oai_identifier_str oai:repositorio.ufpe.br:123456789/11839
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling BARROS JÚNIOR, Severino José deLIMA, Manoel Eusébio de2015-03-10T19:42:57Z2015-03-10T19:42:57Z2014-09-10https://repositorio.ufpe.br/handle/123456789/11839ark:/64986/00130000072h7Organizações que lidam com sistemas computacionais buscam cada vez mais melhorar o desempenho de suas aplicações. Essas aplicações possuem como principal característica o processamento massivo de dados. A solução utilizada para execução desses problemas é baseada, em geral, em arquiteturas de processadores de uso geral, cuja principal característica é sua estrutura de hardware baseada no Paradigma de Von Neumann. Esse paradigma possui uma deficiência conhecida como “Gargalo de Von Neumann”, onde instruções que poderiam ser executadas de forma simultânea, devido à sua independência de dados, acabam sendo processadas sequencialmente, prejudicando o potencial desempenho dessa classe de aplicações. Para aumentar o processamento paralelo dos sistemas, as Organizações costumam adotar uma estrutura baseada na associação de vários PCs, conectados a uma rede de alta velocidade e trabalham em conjunto para resolver um grande problema. A essa associação é atribuída o nome de cluster, a qual cada integrante PC, chamado de nó, realiza uma parte da computação de um grande problema de forma simultânea, proporcionando a ideia de um paralelismo explícito da aplicação como um todo. Mesmo com um aumento significativo de elementos de processamento independentes, este crescimento é insuficiente para atender à enorme quantidade de demanda de computação de dados em aplicações complexas. Ela exige uma divisão de grupos de instruções independentes, distribuídos entre os nós. Esta estratégia dá a idéia de paralelismo e assim um melhor desempenho. No entanto, o desempenho em cada nó permanece degradado, devido ao estrangulamento seqüencial presente nós processadores. A fim de aumentar o paralelismo das operações em cada nó, soluções híbridas, compostas por CPUs convencionais e coprocessadores foram adotadas. Um desses coprocessadores é o FPGA (Field Programmable Gate Array), que geralmente é conectado ao PC através do barramento PCIe. O projeto descrito na dissertação propõe uma metodologia de desenvolvimento para este aglomerado híbrido, de modo a aumentar o desempenho de aplicações científicas que requerem uma grande quantidade de processamento de dados. A metodologia é apresentada e dois exemplos são discutidos em detalhes.FINEP/Petrobrás(CENPES)porUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessHPCCluster HíbridoFPGAOpenMPMPIUm cluster híbrido com módulos de co – processamento em hardware (FPGAS) para processamento de alto desempenhoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Severino José de Barros Júnior.pdf.jpgDISSERTAÇÃO Severino José de Barros Júnior.pdf.jpgGenerated Thumbnailimage/jpeg1333https://repositorio.ufpe.br/bitstream/123456789/11839/5/DISSERTA%c3%87%c3%83O%20Severino%20Jos%c3%a9%20de%20Barros%20J%c3%banior.pdf.jpg350babd6d9084509de3c521299a8a049MD55ORIGINALDISSERTAÇÃO Severino José de Barros Júnior.pdfDISSERTAÇÃO Severino José de Barros Júnior.pdfDissertação de mestradoapplication/pdf3495935https://repositorio.ufpe.br/bitstream/123456789/11839/1/DISSERTA%c3%87%c3%83O%20Severino%20Jos%c3%a9%20de%20Barros%20J%c3%banior.pdfb2c482e8b4f864c84aad98267495cde1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/11839/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/11839/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Severino José de Barros Júnior.pdf.txtDISSERTAÇÃO Severino José de Barros Júnior.pdf.txtExtracted texttext/plain228357https://repositorio.ufpe.br/bitstream/123456789/11839/4/DISSERTA%c3%87%c3%83O%20Severino%20Jos%c3%a9%20de%20Barros%20J%c3%banior.pdf.txtb7f73adeea3204abeac6ad498174851dMD54123456789/118392019-10-25 17:11:14.855oai:repositorio.ufpe.br:123456789/11839TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T20:11:14Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Um cluster híbrido com módulos de co – processamento em hardware (FPGAS) para processamento de alto desempenho
title Um cluster híbrido com módulos de co – processamento em hardware (FPGAS) para processamento de alto desempenho
spellingShingle Um cluster híbrido com módulos de co – processamento em hardware (FPGAS) para processamento de alto desempenho
BARROS JÚNIOR, Severino José de
HPC
Cluster Híbrido
FPGA
OpenMP
MPI
title_short Um cluster híbrido com módulos de co – processamento em hardware (FPGAS) para processamento de alto desempenho
title_full Um cluster híbrido com módulos de co – processamento em hardware (FPGAS) para processamento de alto desempenho
title_fullStr Um cluster híbrido com módulos de co – processamento em hardware (FPGAS) para processamento de alto desempenho
title_full_unstemmed Um cluster híbrido com módulos de co – processamento em hardware (FPGAS) para processamento de alto desempenho
title_sort Um cluster híbrido com módulos de co – processamento em hardware (FPGAS) para processamento de alto desempenho
author BARROS JÚNIOR, Severino José de
author_facet BARROS JÚNIOR, Severino José de
author_role author
dc.contributor.author.fl_str_mv BARROS JÚNIOR, Severino José de
dc.contributor.advisor1.fl_str_mv LIMA, Manoel Eusébio de
contributor_str_mv LIMA, Manoel Eusébio de
dc.subject.por.fl_str_mv HPC
Cluster Híbrido
FPGA
OpenMP
MPI
topic HPC
Cluster Híbrido
FPGA
OpenMP
MPI
description Organizações que lidam com sistemas computacionais buscam cada vez mais melhorar o desempenho de suas aplicações. Essas aplicações possuem como principal característica o processamento massivo de dados. A solução utilizada para execução desses problemas é baseada, em geral, em arquiteturas de processadores de uso geral, cuja principal característica é sua estrutura de hardware baseada no Paradigma de Von Neumann. Esse paradigma possui uma deficiência conhecida como “Gargalo de Von Neumann”, onde instruções que poderiam ser executadas de forma simultânea, devido à sua independência de dados, acabam sendo processadas sequencialmente, prejudicando o potencial desempenho dessa classe de aplicações. Para aumentar o processamento paralelo dos sistemas, as Organizações costumam adotar uma estrutura baseada na associação de vários PCs, conectados a uma rede de alta velocidade e trabalham em conjunto para resolver um grande problema. A essa associação é atribuída o nome de cluster, a qual cada integrante PC, chamado de nó, realiza uma parte da computação de um grande problema de forma simultânea, proporcionando a ideia de um paralelismo explícito da aplicação como um todo. Mesmo com um aumento significativo de elementos de processamento independentes, este crescimento é insuficiente para atender à enorme quantidade de demanda de computação de dados em aplicações complexas. Ela exige uma divisão de grupos de instruções independentes, distribuídos entre os nós. Esta estratégia dá a idéia de paralelismo e assim um melhor desempenho. No entanto, o desempenho em cada nó permanece degradado, devido ao estrangulamento seqüencial presente nós processadores. A fim de aumentar o paralelismo das operações em cada nó, soluções híbridas, compostas por CPUs convencionais e coprocessadores foram adotadas. Um desses coprocessadores é o FPGA (Field Programmable Gate Array), que geralmente é conectado ao PC através do barramento PCIe. O projeto descrito na dissertação propõe uma metodologia de desenvolvimento para este aglomerado híbrido, de modo a aumentar o desempenho de aplicações científicas que requerem uma grande quantidade de processamento de dados. A metodologia é apresentada e dois exemplos são discutidos em detalhes.
publishDate 2014
dc.date.issued.fl_str_mv 2014-09-10
dc.date.accessioned.fl_str_mv 2015-03-10T19:42:57Z
dc.date.available.fl_str_mv 2015-03-10T19:42:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/11839
dc.identifier.dark.fl_str_mv ark:/64986/00130000072h7
url https://repositorio.ufpe.br/handle/123456789/11839
identifier_str_mv ark:/64986/00130000072h7
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/11839/5/DISSERTA%c3%87%c3%83O%20Severino%20Jos%c3%a9%20de%20Barros%20J%c3%banior.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/11839/1/DISSERTA%c3%87%c3%83O%20Severino%20Jos%c3%a9%20de%20Barros%20J%c3%banior.pdf
https://repositorio.ufpe.br/bitstream/123456789/11839/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/11839/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/11839/4/DISSERTA%c3%87%c3%83O%20Severino%20Jos%c3%a9%20de%20Barros%20J%c3%banior.pdf.txt
bitstream.checksum.fl_str_mv 350babd6d9084509de3c521299a8a049
b2c482e8b4f864c84aad98267495cde1
66e71c371cc565284e70f40736c94386
4b8a02c7f2818eaf00dcf2260dd5eb08
b7f73adeea3204abeac6ad498174851d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172745528344576