Learning to detect text-code inconsistencies with weak and manual supervision

Detalhes bibliográficos
Autor(a) principal: SOUZA, Beatriz Bezerra de
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000pd0z
Texto Completo: https://repositorio.ufpe.br/handle/123456789/49318
Resumo: Source code often is associated with a natural language summary, enabling developers to understand the behavior and intent of the code. For example, method-level comments summarize the behavior of a method and test descriptions summarize the intent of a test case. Unfortunately, the text and its corresponding code sometimes are inconsistent, which may hinder code understanding, code reuse, and code maintenance. We propose TCID, an approach for Text-Code Inconsistency Detection, which trains a neural model to distinguish consistent from inconsistent text-code pairs. Our key contribution is to combine two ways of training such a model. First, TCID performs weakly supervised pre-training based on large amounts of consistent examples extracted from code as-is and inconsistent examples created by randomly recombining text-code pairs. Then, TCID fine-tunes the model based on a small and curated set of manually labeled examples. This combination is motivated by the observation that weak supervision alone leads to models that generalize poorly to real-world inconsistencies. Our evaluation applies the two-step training procedure to four state-of-the-art models and evaluates it on two text-vs-code problems: 40.7K method-level comments checked against the corresponding Java method body, and—as a problem not considered in prior work— 338.8K test case descriptions checked against corresponding JavaScript implementations. Our results show that a small amount of manual labeling enables the approach to significantly improve effectiveness, outperforming the current state of the art and improving the F1 score by 5% in Java and by 17% in JavaScript. We validate the usefulness of TCID’s predictions by submitting pull requests, of which 10 have been accepted so far.
id UFPE_daf23fd7bf6b2e3473064c3b514e0b1e
oai_identifier_str oai:repositorio.ufpe.br:123456789/49318
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SOUZA, Beatriz Bezerra dehttp://lattes.cnpq.br/2008820285345452http://lattes.cnpq.br/3762670242328435D'AMORIM, Marcelo Bezerra2023-03-10T13:08:35Z2023-03-10T13:08:35Z2023-02-15SOUZA, Beatriz Bezerra de. Learning to detect text-code inconsistencies with weak and manual supervision. 2023. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/49318ark:/64986/001300000pd0zSource code often is associated with a natural language summary, enabling developers to understand the behavior and intent of the code. For example, method-level comments summarize the behavior of a method and test descriptions summarize the intent of a test case. Unfortunately, the text and its corresponding code sometimes are inconsistent, which may hinder code understanding, code reuse, and code maintenance. We propose TCID, an approach for Text-Code Inconsistency Detection, which trains a neural model to distinguish consistent from inconsistent text-code pairs. Our key contribution is to combine two ways of training such a model. First, TCID performs weakly supervised pre-training based on large amounts of consistent examples extracted from code as-is and inconsistent examples created by randomly recombining text-code pairs. Then, TCID fine-tunes the model based on a small and curated set of manually labeled examples. This combination is motivated by the observation that weak supervision alone leads to models that generalize poorly to real-world inconsistencies. Our evaluation applies the two-step training procedure to four state-of-the-art models and evaluates it on two text-vs-code problems: 40.7K method-level comments checked against the corresponding Java method body, and—as a problem not considered in prior work— 338.8K test case descriptions checked against corresponding JavaScript implementations. Our results show that a small amount of manual labeling enables the approach to significantly improve effectiveness, outperforming the current state of the art and improving the F1 score by 5% in Java and by 17% in JavaScript. We validate the usefulness of TCID’s predictions by submitting pull requests, of which 10 have been accepted so far.CNPqO código-fonte geralmente está associado a um resumo em linguagem natural, permitindo que os desenvolvedores entendam o comportamento e a intenção do código. Por exemplo, co- mentários em nível de método resumem o comportamento de um método e descrições de teste resumem a intenção de um caso de teste. Infelizmente, o texto e seu código correspondente às vezes são inconsistentes, o que pode atrapalhar a compreensão do código, a reutilização do código e a manutenção do código. Propomos TCID, uma abordagem para Detecção de Inconsistência de Código e Texto, que treina um modelo neural para distinguir pares de texto- código consistentes de inconsistentes. Nossa principal contribuição é combinar duas formas de treinar tal modelo. Primeiro, o TCID executa pré-treinamento fracamente supervisionado com base em grandes quantidades de exemplos consistentes extraídos do código como está e exem- plos inconsistentes criados pela recombinação aleatória de pares texto-código. Em seguida, o TCID faz o ajuste fino no modelo baseado em um conjunto pequeno e curado de exemplos ro- tulados manualmente. Esta combinação é motivada pela observação de que a supervisão fraca por si só leva a modelos que generalizam mal a inconsistências do mundo real. Nossa avaliação aplica o procedimento de treinamento em duas etapas a quatro modelos de última geração e avalia-os em dois problemas de texto versus código: 40.7K comentários em nível de método verificados em relação ao corpo do método Java correspondente e—como um problema não considerado em trabalhos anteriores—338.8K as descrições dos casos de teste são verificadas em relação às implementações JavaScript correspondentes. Nossos resultados mostram que uma pequena quantidade de rotulagem manual permite que a eficácia da abordagem melhore significativamente, superando o estado da arte atual e melhorando a pontuação de F1 em 5% em Java e em 17% em JavaScript. Validamos a utilidade das previsões do TCID por envio de pull requests, dos quais 10 foram aceitos até o momento.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEngenharia de softwareDetecção de inconsistênciaLearning to detect text-code inconsistencies with weak and manual supervisioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Beatriz Bezerra de Souza.pdfDISSERTAÇÃO Beatriz Bezerra de Souza.pdfapplication/pdf684719https://repositorio.ufpe.br/bitstream/123456789/49318/1/DISSERTA%c3%87%c3%83O%20Beatriz%20Bezerra%20de%20Souza.pdf0df3a684d568b9b7551e3229dc9fcc28MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49318/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49318/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTDISSERTAÇÃO Beatriz Bezerra de Souza.pdf.txtDISSERTAÇÃO Beatriz Bezerra de Souza.pdf.txtExtracted texttext/plain80708https://repositorio.ufpe.br/bitstream/123456789/49318/4/DISSERTA%c3%87%c3%83O%20Beatriz%20Bezerra%20de%20Souza.pdf.txt9a44b214df53c1bf7b3426437f6065f0MD54THUMBNAILDISSERTAÇÃO Beatriz Bezerra de Souza.pdf.jpgDISSERTAÇÃO Beatriz Bezerra de Souza.pdf.jpgGenerated Thumbnailimage/jpeg1236https://repositorio.ufpe.br/bitstream/123456789/49318/5/DISSERTA%c3%87%c3%83O%20Beatriz%20Bezerra%20de%20Souza.pdf.jpg5971ac83e9a0fb40c70ad94bc2da6b6dMD55123456789/493182023-03-11 02:22:03.209oai:repositorio.ufpe.br:123456789/49318VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-03-11T05:22:03Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Learning to detect text-code inconsistencies with weak and manual supervision
title Learning to detect text-code inconsistencies with weak and manual supervision
spellingShingle Learning to detect text-code inconsistencies with weak and manual supervision
SOUZA, Beatriz Bezerra de
Engenharia de software
Detecção de inconsistência
title_short Learning to detect text-code inconsistencies with weak and manual supervision
title_full Learning to detect text-code inconsistencies with weak and manual supervision
title_fullStr Learning to detect text-code inconsistencies with weak and manual supervision
title_full_unstemmed Learning to detect text-code inconsistencies with weak and manual supervision
title_sort Learning to detect text-code inconsistencies with weak and manual supervision
author SOUZA, Beatriz Bezerra de
author_facet SOUZA, Beatriz Bezerra de
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2008820285345452
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3762670242328435
dc.contributor.author.fl_str_mv SOUZA, Beatriz Bezerra de
dc.contributor.advisor1.fl_str_mv D'AMORIM, Marcelo Bezerra
contributor_str_mv D'AMORIM, Marcelo Bezerra
dc.subject.por.fl_str_mv Engenharia de software
Detecção de inconsistência
topic Engenharia de software
Detecção de inconsistência
description Source code often is associated with a natural language summary, enabling developers to understand the behavior and intent of the code. For example, method-level comments summarize the behavior of a method and test descriptions summarize the intent of a test case. Unfortunately, the text and its corresponding code sometimes are inconsistent, which may hinder code understanding, code reuse, and code maintenance. We propose TCID, an approach for Text-Code Inconsistency Detection, which trains a neural model to distinguish consistent from inconsistent text-code pairs. Our key contribution is to combine two ways of training such a model. First, TCID performs weakly supervised pre-training based on large amounts of consistent examples extracted from code as-is and inconsistent examples created by randomly recombining text-code pairs. Then, TCID fine-tunes the model based on a small and curated set of manually labeled examples. This combination is motivated by the observation that weak supervision alone leads to models that generalize poorly to real-world inconsistencies. Our evaluation applies the two-step training procedure to four state-of-the-art models and evaluates it on two text-vs-code problems: 40.7K method-level comments checked against the corresponding Java method body, and—as a problem not considered in prior work— 338.8K test case descriptions checked against corresponding JavaScript implementations. Our results show that a small amount of manual labeling enables the approach to significantly improve effectiveness, outperforming the current state of the art and improving the F1 score by 5% in Java and by 17% in JavaScript. We validate the usefulness of TCID’s predictions by submitting pull requests, of which 10 have been accepted so far.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-03-10T13:08:35Z
dc.date.available.fl_str_mv 2023-03-10T13:08:35Z
dc.date.issued.fl_str_mv 2023-02-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, Beatriz Bezerra de. Learning to detect text-code inconsistencies with weak and manual supervision. 2023. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2023.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/49318
dc.identifier.dark.fl_str_mv ark:/64986/001300000pd0z
identifier_str_mv SOUZA, Beatriz Bezerra de. Learning to detect text-code inconsistencies with weak and manual supervision. 2023. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2023.
ark:/64986/001300000pd0z
url https://repositorio.ufpe.br/handle/123456789/49318
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/49318/1/DISSERTA%c3%87%c3%83O%20Beatriz%20Bezerra%20de%20Souza.pdf
https://repositorio.ufpe.br/bitstream/123456789/49318/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/49318/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/49318/4/DISSERTA%c3%87%c3%83O%20Beatriz%20Bezerra%20de%20Souza.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/49318/5/DISSERTA%c3%87%c3%83O%20Beatriz%20Bezerra%20de%20Souza.pdf.jpg
bitstream.checksum.fl_str_mv 0df3a684d568b9b7551e3229dc9fcc28
e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
9a44b214df53c1bf7b3426437f6065f0
5971ac83e9a0fb40c70ad94bc2da6b6d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172875587420160