Numerical simulations of magnetic skyrmions in atomically-thin ferromagnetic films

Detalhes bibliográficos
Autor(a) principal: STOSIC, Dusan
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000002h8r
Texto Completo: https://repositorio.ufpe.br/handle/123456789/31432
Resumo: Moore’s Law has driven the electronics industry for the past half century. However, the doubling of transistors about every two years is beginning to break down, owing to fundamental limits that arise as they approach the atomic length. As a result, the search for new pathways for electronics has become crucial. Among potential candidates, the discovery of magnetic textures known as skyrmions has attracted considerable interest and attention in spintronic technology, which relies on both the electron charge and its spin. The unusual topological and particle-like behavior launched skyrmions into the spotlight of scientific research. Topological protected stability, nanoscale size, and low driving currents needed to move them make skyrmions promising candidates for future consumer nanoelectronics. Recent advances in the field have provided all of the basic functions needed for carrying and processing information. In this thesis, we look to advance the current understanding of skyrmion physics, and explore their potential to replace conventional electronics technology. First, the fundamental properties and lifetimes of racetrack skyrmions at room temperature are investigated. We discover that skyrmions can easily collapse at the boundary in laterally finite systems, and propose ways to improve their stability for constrained geometries. Then, pinning of single skyrmions on atomic defects of distinct origins are studied. We reveal that the preferred pinning positions depend on the skyrmion size and type of defect being considered, and discuss applications where control of skyrmions by defects is of particular interest. Next, we explore other magnetic configurations that can compete with skyrmions when considering new materials, and describe a previously unseen mechanism for collapse of skyrmions into cycloidal spin backgrounds. Finally, switching and interactions between skyrmions with distinct topologies are reported. We find that skyrmions transition to higher or lower topologies by absorbing a unit spin texture. The interactions between skyrmions of different topological charges can be attractive or repulsive, leading to the formation of arranged clusters. We conclude with a numerical library for simulating magnetic skyrmions in various scenarios.
id UFPE_e0aac65a8ac7519363df78fe130e57b0
oai_identifier_str oai:repositorio.ufpe.br:123456789/31432
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling STOSIC, Dusanhttp://lattes.cnpq.br/8767847635452835http://lattes.cnpq.br/6321179168854922LUDERMIR, Teresa Bernarda2019-07-11T19:17:49Z2019-07-11T19:17:49Z2018-05-02https://repositorio.ufpe.br/handle/123456789/31432ark:/64986/0013000002h8rMoore’s Law has driven the electronics industry for the past half century. However, the doubling of transistors about every two years is beginning to break down, owing to fundamental limits that arise as they approach the atomic length. As a result, the search for new pathways for electronics has become crucial. Among potential candidates, the discovery of magnetic textures known as skyrmions has attracted considerable interest and attention in spintronic technology, which relies on both the electron charge and its spin. The unusual topological and particle-like behavior launched skyrmions into the spotlight of scientific research. Topological protected stability, nanoscale size, and low driving currents needed to move them make skyrmions promising candidates for future consumer nanoelectronics. Recent advances in the field have provided all of the basic functions needed for carrying and processing information. In this thesis, we look to advance the current understanding of skyrmion physics, and explore their potential to replace conventional electronics technology. First, the fundamental properties and lifetimes of racetrack skyrmions at room temperature are investigated. We discover that skyrmions can easily collapse at the boundary in laterally finite systems, and propose ways to improve their stability for constrained geometries. Then, pinning of single skyrmions on atomic defects of distinct origins are studied. We reveal that the preferred pinning positions depend on the skyrmion size and type of defect being considered, and discuss applications where control of skyrmions by defects is of particular interest. Next, we explore other magnetic configurations that can compete with skyrmions when considering new materials, and describe a previously unseen mechanism for collapse of skyrmions into cycloidal spin backgrounds. Finally, switching and interactions between skyrmions with distinct topologies are reported. We find that skyrmions transition to higher or lower topologies by absorbing a unit spin texture. The interactions between skyrmions of different topological charges can be attractive or repulsive, leading to the formation of arranged clusters. We conclude with a numerical library for simulating magnetic skyrmions in various scenarios.CNPqA Lei de Moore tem impulsionado a indústria eletrônica no último meio século. No entanto, a duplicação de transistores a cada dois anos está começando a quebrar, devido aos limites fundamentais que surgem à medida que se aproximam a largura atômica. Como resultado a busca por novos caminhos para a eletrônica se tornou crucial. Entre os potenciais candidatos, a descoberta de texturas magnéticas conhecidas como skyrmions atraiu muito interesse e atenção na tecnologia spintrônica, que depende ambos da carga e do spin de elétrons. O comportamento topológico e de partículas lançou skyrmions no centro de atenção da pesquisa científica. Skyrmions são candidatos promissores para a futura nano eletrônica do consumidor devido a sua estabilidade topológica, tamanho em nano escala e baixas correntes necessárias para movê-los. Avanços recentes fornecem todas as funções básicas necessárias para transportar e processar informação baseada em skyrmions. Nesta tese, procuramos avançar o conhecimento atual da física de skyrmions e explorar seu potencial para substituir a tecnologia eletrônica convencional. Primeiro investigamos propriedades sua estabilidade em temperatura ambiente. Descobrimos que skyrmions podem escapar pela borda em sistemas finitos e propomos maneiras de melhorar sua estabilidade para geometrias restritas. Depois estudamos como skyrmions ficam presos em defeitos atômicos de origens distintas. Mostramos que as suas posições dependem do tamanho e do tipo de defeito a ser considerado, e também discutimos aplicações em que o controle de skyrmions por defeitos é de interesse. Em seguida, exploramos outras configurações magnéticas que podem competir com os skyrmions quando novos materiais são considerados, e descrevemos um mecanismo inédito para o colapso de skyrmions em fundos de spin ciclóides. Finalmente, relatamos as comutações e interações entre skyrmions de topologias distintas. Descobrimos que skyrmions transacionam para topologias mais altas ou mais baixas pela absorção de uma textura de spin unitária. As interações entre skyrmions de diferentes cargas topológicas podem ser atrativas ou repulsivas, formando agrupamentos arranjados. Concluímos com uma biblioteca numérica para simular skyrmions magnéticos em vários cenários.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência artificialFilmes ferromagnéticosNumerical simulations of magnetic skyrmions in atomically-thin ferromagnetic filmsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Dusan Stosic.pdf.jpgTESE Dusan Stosic.pdf.jpgGenerated Thumbnailimage/jpeg1226https://repositorio.ufpe.br/bitstream/123456789/31432/5/TESE%20Dusan%20Stosic.pdf.jpga7f08d33922a26e1121bd4c779c99c01MD55ORIGINALTESE Dusan Stosic.pdfTESE Dusan Stosic.pdfapplication/pdf15129738https://repositorio.ufpe.br/bitstream/123456789/31432/1/TESE%20Dusan%20Stosic.pdf3e1690eecb324f9d7cff0a7bc11449d3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/31432/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/31432/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE Dusan Stosic.pdf.txtTESE Dusan Stosic.pdf.txtExtracted texttext/plain349123https://repositorio.ufpe.br/bitstream/123456789/31432/4/TESE%20Dusan%20Stosic.pdf.txtd9be69ca40050cef6e8b8fce38e7a828MD54123456789/314322019-10-25 08:44:02.557oai:repositorio.ufpe.br:123456789/31432TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T11:44:02Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Numerical simulations of magnetic skyrmions in atomically-thin ferromagnetic films
title Numerical simulations of magnetic skyrmions in atomically-thin ferromagnetic films
spellingShingle Numerical simulations of magnetic skyrmions in atomically-thin ferromagnetic films
STOSIC, Dusan
Inteligência artificial
Filmes ferromagnéticos
title_short Numerical simulations of magnetic skyrmions in atomically-thin ferromagnetic films
title_full Numerical simulations of magnetic skyrmions in atomically-thin ferromagnetic films
title_fullStr Numerical simulations of magnetic skyrmions in atomically-thin ferromagnetic films
title_full_unstemmed Numerical simulations of magnetic skyrmions in atomically-thin ferromagnetic films
title_sort Numerical simulations of magnetic skyrmions in atomically-thin ferromagnetic films
author STOSIC, Dusan
author_facet STOSIC, Dusan
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8767847635452835
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6321179168854922
dc.contributor.author.fl_str_mv STOSIC, Dusan
dc.contributor.advisor1.fl_str_mv LUDERMIR, Teresa Bernarda
contributor_str_mv LUDERMIR, Teresa Bernarda
dc.subject.por.fl_str_mv Inteligência artificial
Filmes ferromagnéticos
topic Inteligência artificial
Filmes ferromagnéticos
description Moore’s Law has driven the electronics industry for the past half century. However, the doubling of transistors about every two years is beginning to break down, owing to fundamental limits that arise as they approach the atomic length. As a result, the search for new pathways for electronics has become crucial. Among potential candidates, the discovery of magnetic textures known as skyrmions has attracted considerable interest and attention in spintronic technology, which relies on both the electron charge and its spin. The unusual topological and particle-like behavior launched skyrmions into the spotlight of scientific research. Topological protected stability, nanoscale size, and low driving currents needed to move them make skyrmions promising candidates for future consumer nanoelectronics. Recent advances in the field have provided all of the basic functions needed for carrying and processing information. In this thesis, we look to advance the current understanding of skyrmion physics, and explore their potential to replace conventional electronics technology. First, the fundamental properties and lifetimes of racetrack skyrmions at room temperature are investigated. We discover that skyrmions can easily collapse at the boundary in laterally finite systems, and propose ways to improve their stability for constrained geometries. Then, pinning of single skyrmions on atomic defects of distinct origins are studied. We reveal that the preferred pinning positions depend on the skyrmion size and type of defect being considered, and discuss applications where control of skyrmions by defects is of particular interest. Next, we explore other magnetic configurations that can compete with skyrmions when considering new materials, and describe a previously unseen mechanism for collapse of skyrmions into cycloidal spin backgrounds. Finally, switching and interactions between skyrmions with distinct topologies are reported. We find that skyrmions transition to higher or lower topologies by absorbing a unit spin texture. The interactions between skyrmions of different topological charges can be attractive or repulsive, leading to the formation of arranged clusters. We conclude with a numerical library for simulating magnetic skyrmions in various scenarios.
publishDate 2018
dc.date.issued.fl_str_mv 2018-05-02
dc.date.accessioned.fl_str_mv 2019-07-11T19:17:49Z
dc.date.available.fl_str_mv 2019-07-11T19:17:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/31432
dc.identifier.dark.fl_str_mv ark:/64986/0013000002h8r
url https://repositorio.ufpe.br/handle/123456789/31432
identifier_str_mv ark:/64986/0013000002h8r
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Ciencia da Computacao
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/31432/5/TESE%20Dusan%20Stosic.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/31432/1/TESE%20Dusan%20Stosic.pdf
https://repositorio.ufpe.br/bitstream/123456789/31432/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/31432/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/31432/4/TESE%20Dusan%20Stosic.pdf.txt
bitstream.checksum.fl_str_mv a7f08d33922a26e1121bd4c779c99c01
3e1690eecb324f9d7cff0a7bc11449d3
e39d27027a6cc9cb039ad269a5db8e34
4b8a02c7f2818eaf00dcf2260dd5eb08
d9be69ca40050cef6e8b8fce38e7a828
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172700861104128