Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference

Detalhes bibliográficos
Autor(a) principal: RADUNZ, Anabeth Petry
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000001jcn
Texto Completo: https://repositorio.ufpe.br/handle/123456789/51394
Resumo: Discrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware.
id UFPE_e33fd48d42e245a33de5777325ef9775
oai_identifier_str oai:repositorio.ufpe.br:123456789/51394
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling RADUNZ, Anabeth Petryhttp://lattes.cnpq.br/2359539245136931http://lattes.cnpq.br/7413544381333504http://lattes.cnpq.br/9904863693302949CINTRA, Renato José de SobralBAYER, Fábio Mariano2023-07-05T13:57:54Z2023-07-05T13:57:54Z2023-03-31RADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/51394ark:/64986/0013000001jcnDiscrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware.FACEPETransformadas discretas desempenham um papel importante no contexto de processamento de sinais. Elas são ferramentas pivotais pois permitem analisar e interpretar dados no domínio das transformadas, que frequentemente revelam padrões úteis. Em particular, podemos citar a transformada discreta de Fourier (DFT), a transformada de Karhunen-Loève (KLT) e a trans- formada discreta do cosseno (DCT) como as transformadas mais relevantes no contexto de processamento de sinais e imagens. Embora a relevância do uso dessas transformadas tenha sido amplamente corroborado em diversos estudos, os custos computacionais necessários para suas implementações podem se tornar proibitivos em contextos em que há grande quantidade de dados e/ou a demanda por dispositivos de baixa complexidade. Nesse sentido, algoritmos rápidos podem ser uma solução para a redução das operações aritméticas necessárias para a computação das transformadas. Porém, ainda é preciso lidar com a aritmética de ponto flutuante. Dessa forma, diversas aproximações matriciais de baixa complexidade vêm sendo propostas, como sendo uma alternativa de baixo custo para o cômputo destas transformadas. A presente tese está dividida em duas partes. Na primeira parte, propomos diversas classes de aproximações de baixa complexidade para a KLT e para a DCT, algoritmos rápidos, e demonstramos sua usabilidade no contexto de processamento de imagens. Na segunda parte da tese, apresentamos classes de aproximação para a DFT e sua aplicabilidade em problemas de inferência estatística, como no contexto de detecção de sinais. Dos resultados obtidos, podemos concluir que as aproximações de baixa complexidade para as transformadas podem ser consideradas excelentes alternativas em contextos em que há uma quantidade massiva de dados a ser processada ou no caso de implementação em hardware de baixo consumo.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessEstatística aplicadaTransformadas discretasTransformadas aproximadas de baixa complexidadeCompressão de imagensLow-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inferenceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Anabeth Petry Radünz.pdfTESE Anabeth Petry Radünz.pdfapplication/pdf8177541https://repositorio.ufpe.br/bitstream/123456789/51394/1/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdfa4672638cf0b678570311c6bb7966131MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/51394/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/51394/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTTESE Anabeth Petry Radünz.pdf.txtTESE Anabeth Petry Radünz.pdf.txtExtracted texttext/plain280028https://repositorio.ufpe.br/bitstream/123456789/51394/4/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdf.txt622458d22f5754394628ba0a2ec7e81aMD54THUMBNAILTESE Anabeth Petry Radünz.pdf.jpgTESE Anabeth Petry Radünz.pdf.jpgGenerated Thumbnailimage/jpeg1272https://repositorio.ufpe.br/bitstream/123456789/51394/5/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdf.jpg35d9ab1692f28a753fc92efedf477e76MD55123456789/513942023-07-06 02:34:10.815oai:repositorio.ufpe.br:123456789/51394VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-07-06T05:34:10Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
title Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
spellingShingle Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
RADUNZ, Anabeth Petry
Estatística aplicada
Transformadas discretas
Transformadas aproximadas de baixa complexidade
Compressão de imagens
title_short Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
title_full Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
title_fullStr Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
title_full_unstemmed Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
title_sort Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
author RADUNZ, Anabeth Petry
author_facet RADUNZ, Anabeth Petry
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2359539245136931
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7413544381333504
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/9904863693302949
dc.contributor.author.fl_str_mv RADUNZ, Anabeth Petry
dc.contributor.advisor1.fl_str_mv CINTRA, Renato José de Sobral
dc.contributor.advisor-co1.fl_str_mv BAYER, Fábio Mariano
contributor_str_mv CINTRA, Renato José de Sobral
BAYER, Fábio Mariano
dc.subject.por.fl_str_mv Estatística aplicada
Transformadas discretas
Transformadas aproximadas de baixa complexidade
Compressão de imagens
topic Estatística aplicada
Transformadas discretas
Transformadas aproximadas de baixa complexidade
Compressão de imagens
description Discrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-07-05T13:57:54Z
dc.date.available.fl_str_mv 2023-07-05T13:57:54Z
dc.date.issued.fl_str_mv 2023-03-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/51394
dc.identifier.dark.fl_str_mv ark:/64986/0013000001jcn
identifier_str_mv RADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023.
ark:/64986/0013000001jcn
url https://repositorio.ufpe.br/handle/123456789/51394
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Estatistica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/51394/1/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdf
https://repositorio.ufpe.br/bitstream/123456789/51394/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/51394/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/51394/4/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/51394/5/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdf.jpg
bitstream.checksum.fl_str_mv a4672638cf0b678570311c6bb7966131
e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
622458d22f5754394628ba0a2ec7e81a
35d9ab1692f28a753fc92efedf477e76
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172691367297024