Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000001jcn |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/51394 |
Resumo: | Discrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware. |
id |
UFPE_e33fd48d42e245a33de5777325ef9775 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/51394 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
RADUNZ, Anabeth Petryhttp://lattes.cnpq.br/2359539245136931http://lattes.cnpq.br/7413544381333504http://lattes.cnpq.br/9904863693302949CINTRA, Renato José de SobralBAYER, Fábio Mariano2023-07-05T13:57:54Z2023-07-05T13:57:54Z2023-03-31RADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/51394ark:/64986/0013000001jcnDiscrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware.FACEPETransformadas discretas desempenham um papel importante no contexto de processamento de sinais. Elas são ferramentas pivotais pois permitem analisar e interpretar dados no domínio das transformadas, que frequentemente revelam padrões úteis. Em particular, podemos citar a transformada discreta de Fourier (DFT), a transformada de Karhunen-Loève (KLT) e a trans- formada discreta do cosseno (DCT) como as transformadas mais relevantes no contexto de processamento de sinais e imagens. Embora a relevância do uso dessas transformadas tenha sido amplamente corroborado em diversos estudos, os custos computacionais necessários para suas implementações podem se tornar proibitivos em contextos em que há grande quantidade de dados e/ou a demanda por dispositivos de baixa complexidade. Nesse sentido, algoritmos rápidos podem ser uma solução para a redução das operações aritméticas necessárias para a computação das transformadas. Porém, ainda é preciso lidar com a aritmética de ponto flutuante. Dessa forma, diversas aproximações matriciais de baixa complexidade vêm sendo propostas, como sendo uma alternativa de baixo custo para o cômputo destas transformadas. A presente tese está dividida em duas partes. Na primeira parte, propomos diversas classes de aproximações de baixa complexidade para a KLT e para a DCT, algoritmos rápidos, e demonstramos sua usabilidade no contexto de processamento de imagens. Na segunda parte da tese, apresentamos classes de aproximação para a DFT e sua aplicabilidade em problemas de inferência estatística, como no contexto de detecção de sinais. Dos resultados obtidos, podemos concluir que as aproximações de baixa complexidade para as transformadas podem ser consideradas excelentes alternativas em contextos em que há uma quantidade massiva de dados a ser processada ou no caso de implementação em hardware de baixo consumo.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessEstatística aplicadaTransformadas discretasTransformadas aproximadas de baixa complexidadeCompressão de imagensLow-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inferenceinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Anabeth Petry Radünz.pdfTESE Anabeth Petry Radünz.pdfapplication/pdf8177541https://repositorio.ufpe.br/bitstream/123456789/51394/1/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdfa4672638cf0b678570311c6bb7966131MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/51394/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/51394/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTTESE Anabeth Petry Radünz.pdf.txtTESE Anabeth Petry Radünz.pdf.txtExtracted texttext/plain280028https://repositorio.ufpe.br/bitstream/123456789/51394/4/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdf.txt622458d22f5754394628ba0a2ec7e81aMD54THUMBNAILTESE Anabeth Petry Radünz.pdf.jpgTESE Anabeth Petry Radünz.pdf.jpgGenerated Thumbnailimage/jpeg1272https://repositorio.ufpe.br/bitstream/123456789/51394/5/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdf.jpg35d9ab1692f28a753fc92efedf477e76MD55123456789/513942023-07-06 02:34:10.815oai:repositorio.ufpe.br:123456789/51394VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-07-06T05:34:10Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
title |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
spellingShingle |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference RADUNZ, Anabeth Petry Estatística aplicada Transformadas discretas Transformadas aproximadas de baixa complexidade Compressão de imagens |
title_short |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
title_full |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
title_fullStr |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
title_full_unstemmed |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
title_sort |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
author |
RADUNZ, Anabeth Petry |
author_facet |
RADUNZ, Anabeth Petry |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/2359539245136931 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7413544381333504 |
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/9904863693302949 |
dc.contributor.author.fl_str_mv |
RADUNZ, Anabeth Petry |
dc.contributor.advisor1.fl_str_mv |
CINTRA, Renato José de Sobral |
dc.contributor.advisor-co1.fl_str_mv |
BAYER, Fábio Mariano |
contributor_str_mv |
CINTRA, Renato José de Sobral BAYER, Fábio Mariano |
dc.subject.por.fl_str_mv |
Estatística aplicada Transformadas discretas Transformadas aproximadas de baixa complexidade Compressão de imagens |
topic |
Estatística aplicada Transformadas discretas Transformadas aproximadas de baixa complexidade Compressão de imagens |
description |
Discrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-07-05T13:57:54Z |
dc.date.available.fl_str_mv |
2023-07-05T13:57:54Z |
dc.date.issued.fl_str_mv |
2023-03-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/51394 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000001jcn |
identifier_str_mv |
RADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023. ark:/64986/0013000001jcn |
url |
https://repositorio.ufpe.br/handle/123456789/51394 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
embargoedAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Estatistica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/51394/1/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdf https://repositorio.ufpe.br/bitstream/123456789/51394/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/51394/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/51394/4/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/51394/5/TESE%20Anabeth%20Petry%20Rad%c3%bcnz.pdf.jpg |
bitstream.checksum.fl_str_mv |
a4672638cf0b678570311c6bb7966131 e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 622458d22f5754394628ba0a2ec7e81a 35d9ab1692f28a753fc92efedf477e76 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172691367297024 |