Improved likelihood inference in unit gama regressions

Detalhes bibliográficos
Autor(a) principal: PEREIRA, Ana Cristina Guedes
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/00130000131gb
Texto Completo: https://repositorio.ufpe.br/handle/123456789/26890
Resumo: In this dissertation, we focus on the issue of performing likelihood ratio testing inferences in unit gamma regressions. Our interest lies in testing inferences that are accurate and reliable in small samples. The unit gamma regression model was proposed by Mousa et al. (2016) based on the unit gamma distribution introduced by Grassia (1977). Closed form expressions for the score vector and for Fisher’s information matrix were obtained by Mousa et al. (2016). The model is useful for dealing with doubly limited continuous dependent variables (DLCDV), such as proportions, indices and rates, being an alternative to the beta regression model, which has been widely used in the literature. We derive a small sample adjustment to the likelihood ration ratio test statistic in the class of unit gamma regressions using the approach proposed by Skovgaard (2001). The numerical evidence we present show that the two corrected tests we propose outperform the standard likelihood ratio test in small samples. A real data example is presented.
id UFPE_e37926f744a0e9f72eb2b89df7b2abcd
oai_identifier_str oai:repositorio.ufpe.br:123456789/26890
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling PEREIRA, Ana Cristina Guedeshttp://lattes.cnpq.br/5554388627123748http://lattes.cnpq.br/2225977664095899CRIBARI NETO, FranciscoOSPINA, Patrícia Leone Espinheira2018-09-24T18:56:47Z2018-09-24T18:56:47Z2017-08-02https://repositorio.ufpe.br/handle/123456789/26890ark:/64986/00130000131gbIn this dissertation, we focus on the issue of performing likelihood ratio testing inferences in unit gamma regressions. Our interest lies in testing inferences that are accurate and reliable in small samples. The unit gamma regression model was proposed by Mousa et al. (2016) based on the unit gamma distribution introduced by Grassia (1977). Closed form expressions for the score vector and for Fisher’s information matrix were obtained by Mousa et al. (2016). The model is useful for dealing with doubly limited continuous dependent variables (DLCDV), such as proportions, indices and rates, being an alternative to the beta regression model, which has been widely used in the literature. We derive a small sample adjustment to the likelihood ration ratio test statistic in the class of unit gamma regressions using the approach proposed by Skovgaard (2001). The numerical evidence we present show that the two corrected tests we propose outperform the standard likelihood ratio test in small samples. A real data example is presented.CAPESO foco da presente dissertação reside na realização de testes de hipóteses em regressões gama unitária. O teste da razão de verossimilhanças pode ser consideravelmente impreciso em pequenas amostras. Nosso interesse reside na obtenção de testes que sejam precisos e confiáveis quando o tamanho da amostra é pequeno. A distribuição gama unitária foi proposta por Grassia (1977) e serviu de base para o modelo de regressão gama unitário introduzido por Mousa et al. (2016). O modelo sugerido é útil para modelar variáveis dependentes contínuas duplamente limitadas (VDCDL), como proporções, índices e taxas, sendo uma alternativa ao modelo de regressão beta, que tem sido amplamente utilizado na literatura. Nós derivamos uma correção para a estatística da razão de verossimilhanças nessa classe de modelo utilizando o enfoque desenvolvido por Skovgaard (2001). Com base em tal correção, apresentamos duas estatísticas de teste corrigidas. A evidência numérica que nós apresentamos indica que os testes corrigidos conduzem a inferências mais precisas do que aquelas obtidas com o teste da razão de verossimilhanças padrão em pequenas amostras. Aplicamos os resultados a um conjunto real de dados.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessAnálise de regressãoRegressão betaImproved likelihood inference in unit gama regressionsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Ana Cristina Guedes Pereira.pdf.jpgDISSERTAÇÃO Ana Cristina Guedes Pereira.pdf.jpgGenerated Thumbnailimage/jpeg1204https://repositorio.ufpe.br/bitstream/123456789/26890/6/DISSERTA%c3%87%c3%83O%20Ana%20Cristina%20Guedes%20Pereira.pdf.jpg4a48dd74091bf797bbd99a5eb867bd29MD56ORIGINALDISSERTAÇÃO Ana Cristina Guedes Pereira.pdfDISSERTAÇÃO Ana Cristina Guedes Pereira.pdfapplication/pdf566009https://repositorio.ufpe.br/bitstream/123456789/26890/1/DISSERTA%c3%87%c3%83O%20Ana%20Cristina%20Guedes%20Pereira.pdfcec844f5b58d53ff422c894a91e933cfMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/26890/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/26890/4/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD54TEXTDISSERTAÇÃO Ana Cristina Guedes Pereira.pdf.txtDISSERTAÇÃO Ana Cristina Guedes Pereira.pdf.txtExtracted texttext/plain83655https://repositorio.ufpe.br/bitstream/123456789/26890/5/DISSERTA%c3%87%c3%83O%20Ana%20Cristina%20Guedes%20Pereira.pdf.txtf06cc3de634892f5a5f100de45d23b3aMD55123456789/268902019-10-25 08:19:17.407oai:repositorio.ufpe.br:123456789/26890TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T11:19:17Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Improved likelihood inference in unit gama regressions
title Improved likelihood inference in unit gama regressions
spellingShingle Improved likelihood inference in unit gama regressions
PEREIRA, Ana Cristina Guedes
Análise de regressão
Regressão beta
title_short Improved likelihood inference in unit gama regressions
title_full Improved likelihood inference in unit gama regressions
title_fullStr Improved likelihood inference in unit gama regressions
title_full_unstemmed Improved likelihood inference in unit gama regressions
title_sort Improved likelihood inference in unit gama regressions
author PEREIRA, Ana Cristina Guedes
author_facet PEREIRA, Ana Cristina Guedes
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/5554388627123748
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2225977664095899
dc.contributor.author.fl_str_mv PEREIRA, Ana Cristina Guedes
dc.contributor.advisor1.fl_str_mv CRIBARI NETO, Francisco
dc.contributor.advisor-co1.fl_str_mv OSPINA, Patrícia Leone Espinheira
contributor_str_mv CRIBARI NETO, Francisco
OSPINA, Patrícia Leone Espinheira
dc.subject.por.fl_str_mv Análise de regressão
Regressão beta
topic Análise de regressão
Regressão beta
description In this dissertation, we focus on the issue of performing likelihood ratio testing inferences in unit gamma regressions. Our interest lies in testing inferences that are accurate and reliable in small samples. The unit gamma regression model was proposed by Mousa et al. (2016) based on the unit gamma distribution introduced by Grassia (1977). Closed form expressions for the score vector and for Fisher’s information matrix were obtained by Mousa et al. (2016). The model is useful for dealing with doubly limited continuous dependent variables (DLCDV), such as proportions, indices and rates, being an alternative to the beta regression model, which has been widely used in the literature. We derive a small sample adjustment to the likelihood ration ratio test statistic in the class of unit gamma regressions using the approach proposed by Skovgaard (2001). The numerical evidence we present show that the two corrected tests we propose outperform the standard likelihood ratio test in small samples. A real data example is presented.
publishDate 2017
dc.date.issued.fl_str_mv 2017-08-02
dc.date.accessioned.fl_str_mv 2018-09-24T18:56:47Z
dc.date.available.fl_str_mv 2018-09-24T18:56:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/26890
dc.identifier.dark.fl_str_mv ark:/64986/00130000131gb
url https://repositorio.ufpe.br/handle/123456789/26890
identifier_str_mv ark:/64986/00130000131gb
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Estatistica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/26890/6/DISSERTA%c3%87%c3%83O%20Ana%20Cristina%20Guedes%20Pereira.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/26890/1/DISSERTA%c3%87%c3%83O%20Ana%20Cristina%20Guedes%20Pereira.pdf
https://repositorio.ufpe.br/bitstream/123456789/26890/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/26890/4/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/26890/5/DISSERTA%c3%87%c3%83O%20Ana%20Cristina%20Guedes%20Pereira.pdf.txt
bitstream.checksum.fl_str_mv 4a48dd74091bf797bbd99a5eb867bd29
cec844f5b58d53ff422c894a91e933cf
4b8a02c7f2818eaf00dcf2260dd5eb08
e39d27027a6cc9cb039ad269a5db8e34
f06cc3de634892f5a5f100de45d23b3a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172986797293568