Análise de agrupamento espacial para dados criminais

Detalhes bibliográficos
Autor(a) principal: LIMA, Alexsandra Gomes de
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000007jdk
Texto Completo: https://repositorio.ufpe.br/handle/123456789/50087
Resumo: Esta tese apresenta um estudo sob a perspectiva da análise de agrupamento envolvendo in- formação espacial e dados criminais. Foram considerados cinco métodos de agrupamento: K-Means, PAM (Partitioning Around Medoids), VNSKMED (Variable Neighborhood Search for K-Medoides), Ward-Like e SKATER (Spatial K’luster Analysis by Tree Edge Removal), além disso, foram propostas alterações nos algoritmos Ward-Like e SKATER modificando a estrutura de pesos e o processo de partição dos grupos usando a distância Gower, nomeados de Ward-Like.New e SKATER.New, respectivamente. Os métodos foram comparados, por meio de três índices de validação: índice Calinski-Harabasz, índice Dunn e índice Davies-Bouldin. Para a análise dos algoritmos, foram utilizados dados de 2007 a 2015 sobre a ocorrência de crimes nos bairros da cidade de Recife envolvendo as classificações das Áreas Integradas de Segurança. Os algoritmos permitiram explorar os padrões relacionados aos crimes, possibili- tando mapeá-los em grupos de bairros da capital pernambucana. Os resultados apontam que as modificações Ward-Like.New e SKATER.New produziram os melhores resultados, sendo o SKATER.New o recomendado.
id UFPE_e7f5d01835e715396ec9a73dd4aa5a68
oai_identifier_str oai:repositorio.ufpe.br:123456789/50087
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling LIMA, Alexsandra Gomes dehttp://lattes.cnpq.br/1054588099588947http://lattes.cnpq.br/6357960802605841http://lattes.cnpq.br/1122718253481481OSPINA MARTÍNEZ, RaydonalFERRAZ, Cristiano2023-05-11T16:09:56Z2023-05-11T16:09:56Z2023-02-27LIMA, Alexsandra Gomes de Análise de agrupamento espacial para dados criminais. 2023. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/50087ark:/64986/0013000007jdkEsta tese apresenta um estudo sob a perspectiva da análise de agrupamento envolvendo in- formação espacial e dados criminais. Foram considerados cinco métodos de agrupamento: K-Means, PAM (Partitioning Around Medoids), VNSKMED (Variable Neighborhood Search for K-Medoides), Ward-Like e SKATER (Spatial K’luster Analysis by Tree Edge Removal), além disso, foram propostas alterações nos algoritmos Ward-Like e SKATER modificando a estrutura de pesos e o processo de partição dos grupos usando a distância Gower, nomeados de Ward-Like.New e SKATER.New, respectivamente. Os métodos foram comparados, por meio de três índices de validação: índice Calinski-Harabasz, índice Dunn e índice Davies-Bouldin. Para a análise dos algoritmos, foram utilizados dados de 2007 a 2015 sobre a ocorrência de crimes nos bairros da cidade de Recife envolvendo as classificações das Áreas Integradas de Segurança. Os algoritmos permitiram explorar os padrões relacionados aos crimes, possibili- tando mapeá-los em grupos de bairros da capital pernambucana. Os resultados apontam que as modificações Ward-Like.New e SKATER.New produziram os melhores resultados, sendo o SKATER.New o recomendado.CAPESThis doctoral dissertation presents a study from the perspective of cluster analysis involving spatial information and criminal data. Five clustering methods were considered: K-Means, PAM (Partitioning Around Medoids), VNSKMED (Variable Neighborhood Search for K-Medoides), Ward-Like and SKATER (Spatial K’luster Analysis by Tree Edge Removal). proposed changes in the Ward-Like and SKATER algorithms by modifying the weight structure and the process of considering groups using the Gower distance, named Ward-Like.New and SKATER.New, re- spectively. The methods were compared using three validation indices: Calinski-Harabasz index, Dunn index and Davies-Bouldin index. For the analysis of algorithms, data from 2007 to 2015 on the occurrence of crimes in the neighborhoods of the city of Recife were used, influenced by the classifications of the Integrated Security Areas. The algorithms made it possible to explore patterns related to crimes, allowing them to be mapped in agglomerations of neighborhoods in the capital of Pernambuco. The results showed that the Ward-Like.New and SKATER.New modifications produced the best results, with SKATER.New being recommended, attesting to better performance in the use of criminal data and in the formation of new Integrated Security Areas.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em EstatisticaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessEstatística aplicadaAgrupamentoÁrea integrada de segurançaAnálise de agrupamento espacial para dados criminaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALTESE Alexsandra Gomes de Lima.pdfTESE Alexsandra Gomes de Lima.pdfapplication/pdf3975226https://repositorio.ufpe.br/bitstream/123456789/50087/1/TESE%20Alexsandra%20Gomes%20de%20Lima.pdf7f5648c4f49f1d59d8801dc118eaa9afMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/50087/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/50087/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTTESE Alexsandra Gomes de Lima.pdf.txtTESE Alexsandra Gomes de Lima.pdf.txtExtracted texttext/plain137573https://repositorio.ufpe.br/bitstream/123456789/50087/4/TESE%20Alexsandra%20Gomes%20de%20Lima.pdf.txtbdde585a76816bd2ea40b43a53b6364dMD54THUMBNAILTESE Alexsandra Gomes de Lima.pdf.jpgTESE Alexsandra Gomes de Lima.pdf.jpgGenerated Thumbnailimage/jpeg1201https://repositorio.ufpe.br/bitstream/123456789/50087/5/TESE%20Alexsandra%20Gomes%20de%20Lima.pdf.jpg0ccbd1c9e462db932a79b42db7f25bcfMD55123456789/500872023-05-12 02:17:48.917oai:repositorio.ufpe.br:123456789/50087VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-05-12T05:17:48Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Análise de agrupamento espacial para dados criminais
title Análise de agrupamento espacial para dados criminais
spellingShingle Análise de agrupamento espacial para dados criminais
LIMA, Alexsandra Gomes de
Estatística aplicada
Agrupamento
Área integrada de segurança
title_short Análise de agrupamento espacial para dados criminais
title_full Análise de agrupamento espacial para dados criminais
title_fullStr Análise de agrupamento espacial para dados criminais
title_full_unstemmed Análise de agrupamento espacial para dados criminais
title_sort Análise de agrupamento espacial para dados criminais
author LIMA, Alexsandra Gomes de
author_facet LIMA, Alexsandra Gomes de
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/1054588099588947
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/6357960802605841
dc.contributor.advisor-coLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/1122718253481481
dc.contributor.author.fl_str_mv LIMA, Alexsandra Gomes de
dc.contributor.advisor1.fl_str_mv OSPINA MARTÍNEZ, Raydonal
dc.contributor.advisor-co1.fl_str_mv FERRAZ, Cristiano
contributor_str_mv OSPINA MARTÍNEZ, Raydonal
FERRAZ, Cristiano
dc.subject.por.fl_str_mv Estatística aplicada
Agrupamento
Área integrada de segurança
topic Estatística aplicada
Agrupamento
Área integrada de segurança
description Esta tese apresenta um estudo sob a perspectiva da análise de agrupamento envolvendo in- formação espacial e dados criminais. Foram considerados cinco métodos de agrupamento: K-Means, PAM (Partitioning Around Medoids), VNSKMED (Variable Neighborhood Search for K-Medoides), Ward-Like e SKATER (Spatial K’luster Analysis by Tree Edge Removal), além disso, foram propostas alterações nos algoritmos Ward-Like e SKATER modificando a estrutura de pesos e o processo de partição dos grupos usando a distância Gower, nomeados de Ward-Like.New e SKATER.New, respectivamente. Os métodos foram comparados, por meio de três índices de validação: índice Calinski-Harabasz, índice Dunn e índice Davies-Bouldin. Para a análise dos algoritmos, foram utilizados dados de 2007 a 2015 sobre a ocorrência de crimes nos bairros da cidade de Recife envolvendo as classificações das Áreas Integradas de Segurança. Os algoritmos permitiram explorar os padrões relacionados aos crimes, possibili- tando mapeá-los em grupos de bairros da capital pernambucana. Os resultados apontam que as modificações Ward-Like.New e SKATER.New produziram os melhores resultados, sendo o SKATER.New o recomendado.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-05-11T16:09:56Z
dc.date.available.fl_str_mv 2023-05-11T16:09:56Z
dc.date.issued.fl_str_mv 2023-02-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA, Alexsandra Gomes de Análise de agrupamento espacial para dados criminais. 2023. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2023.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/50087
dc.identifier.dark.fl_str_mv ark:/64986/0013000007jdk
identifier_str_mv LIMA, Alexsandra Gomes de Análise de agrupamento espacial para dados criminais. 2023. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2023.
ark:/64986/0013000007jdk
url https://repositorio.ufpe.br/handle/123456789/50087
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Estatistica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/50087/1/TESE%20Alexsandra%20Gomes%20de%20Lima.pdf
https://repositorio.ufpe.br/bitstream/123456789/50087/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/50087/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/50087/4/TESE%20Alexsandra%20Gomes%20de%20Lima.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/50087/5/TESE%20Alexsandra%20Gomes%20de%20Lima.pdf.jpg
bitstream.checksum.fl_str_mv 7f5648c4f49f1d59d8801dc118eaa9af
e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
bdde585a76816bd2ea40b43a53b6364d
0ccbd1c9e462db932a79b42db7f25bcf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172750126350336