ARCA - Alerts root cause analysis framework
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/0013000002cc8 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/13946 |
Resumo: | Modern virtual plagues, or malwares, have focused on internal host infection and em-ploy evasive techniques to conceal itself from antivirus systems and users. Traditional network security mechanisms, such as Firewalls, IDS (Intrusion Detection Systems) and Antivirus Systems, have lost efficiency when fighting malware propagation. Recent researches present alternatives to detect malicious traffic and malware propagation through traffic analysis, however, the presented results are based on experiments with biased artificial traffic or traffic too specific to generalize, do not consider the existence of background traffic related with local network services or demands previous knowledge of networks infrastructure. Specifically don’t consider a well-known intru-sion detection systems problem, the high false positive rate which may be responsible for 99% of total alerts. This dissertation proposes a framework (ARCA – Alerts Root Cause Analysis) capable of guide a security engineer, or system administrator, to iden-tify alerts root causes, malicious or not, and allow the identification of malicious traffic and false positives. Moreover, describes modern malwares propagation mechanisms, presents methods to detect malwares through analysis of IDS alerts and false positives reduction. ARCA combines an aggregation method based on Relative Uncertainty with Apriori, a frequent itemset mining algorithm. Tests with 2 real datasets show an 88% reduction in the amount of alerts to be analyzed without previous knowledge of network infrastructure. |
id |
UFPE_ecce98bd2c940001fd34af278db6c0c1 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/13946 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
Melo, Daniel AraújoSadok, Djamel Fawzi Hadj2015-05-15T14:58:14Z2015-05-15T14:58:14Z2014-09-08https://repositorio.ufpe.br/handle/123456789/13946ark:/64986/0013000002cc8Modern virtual plagues, or malwares, have focused on internal host infection and em-ploy evasive techniques to conceal itself from antivirus systems and users. Traditional network security mechanisms, such as Firewalls, IDS (Intrusion Detection Systems) and Antivirus Systems, have lost efficiency when fighting malware propagation. Recent researches present alternatives to detect malicious traffic and malware propagation through traffic analysis, however, the presented results are based on experiments with biased artificial traffic or traffic too specific to generalize, do not consider the existence of background traffic related with local network services or demands previous knowledge of networks infrastructure. Specifically don’t consider a well-known intru-sion detection systems problem, the high false positive rate which may be responsible for 99% of total alerts. This dissertation proposes a framework (ARCA – Alerts Root Cause Analysis) capable of guide a security engineer, or system administrator, to iden-tify alerts root causes, malicious or not, and allow the identification of malicious traffic and false positives. Moreover, describes modern malwares propagation mechanisms, presents methods to detect malwares through analysis of IDS alerts and false positives reduction. ARCA combines an aggregation method based on Relative Uncertainty with Apriori, a frequent itemset mining algorithm. Tests with 2 real datasets show an 88% reduction in the amount of alerts to be analyzed without previous knowledge of network infrastructure.engUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessIntrusion detectionMalwareAlerts correlationAdvanced persis-tent threatsARCA - Alerts root cause analysis frameworkinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Daniel Araújo Melo.pdf.jpgDISSERTAÇÃO Daniel Araújo Melo.pdf.jpgGenerated Thumbnailimage/jpeg1228https://repositorio.ufpe.br/bitstream/123456789/13946/5/DISSERTA%c3%87%c3%83O%20Daniel%20Ara%c3%bajo%20Melo.pdf.jpg900a58af340d5e8727d2e1e09b05de29MD55ORIGINALDISSERTAÇÃO Daniel Araújo Melo.pdfDISSERTAÇÃO Daniel Araújo Melo.pdfapplication/pdf2348702https://repositorio.ufpe.br/bitstream/123456789/13946/1/DISSERTA%c3%87%c3%83O%20Daniel%20Ara%c3%bajo%20Melo.pdfcdf9ac0421311267960355f9d6ca4479MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81232https://repositorio.ufpe.br/bitstream/123456789/13946/2/license_rdf66e71c371cc565284e70f40736c94386MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/13946/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTDISSERTAÇÃO Daniel Araújo Melo.pdf.txtDISSERTAÇÃO Daniel Araújo Melo.pdf.txtExtracted texttext/plain206540https://repositorio.ufpe.br/bitstream/123456789/13946/4/DISSERTA%c3%87%c3%83O%20Daniel%20Ara%c3%bajo%20Melo.pdf.txt0296494af7c8c7afe4526857ff2ae14bMD54123456789/139462019-10-25 18:56:26.249oai:repositorio.ufpe.br:123456789/13946TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T21:56:26Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
ARCA - Alerts root cause analysis framework |
title |
ARCA - Alerts root cause analysis framework |
spellingShingle |
ARCA - Alerts root cause analysis framework Melo, Daniel Araújo Intrusion detection Malware Alerts correlation Advanced persis-tent threats |
title_short |
ARCA - Alerts root cause analysis framework |
title_full |
ARCA - Alerts root cause analysis framework |
title_fullStr |
ARCA - Alerts root cause analysis framework |
title_full_unstemmed |
ARCA - Alerts root cause analysis framework |
title_sort |
ARCA - Alerts root cause analysis framework |
author |
Melo, Daniel Araújo |
author_facet |
Melo, Daniel Araújo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Melo, Daniel Araújo |
dc.contributor.advisor1.fl_str_mv |
Sadok, Djamel Fawzi Hadj |
contributor_str_mv |
Sadok, Djamel Fawzi Hadj |
dc.subject.por.fl_str_mv |
Intrusion detection Malware Alerts correlation Advanced persis-tent threats |
topic |
Intrusion detection Malware Alerts correlation Advanced persis-tent threats |
description |
Modern virtual plagues, or malwares, have focused on internal host infection and em-ploy evasive techniques to conceal itself from antivirus systems and users. Traditional network security mechanisms, such as Firewalls, IDS (Intrusion Detection Systems) and Antivirus Systems, have lost efficiency when fighting malware propagation. Recent researches present alternatives to detect malicious traffic and malware propagation through traffic analysis, however, the presented results are based on experiments with biased artificial traffic or traffic too specific to generalize, do not consider the existence of background traffic related with local network services or demands previous knowledge of networks infrastructure. Specifically don’t consider a well-known intru-sion detection systems problem, the high false positive rate which may be responsible for 99% of total alerts. This dissertation proposes a framework (ARCA – Alerts Root Cause Analysis) capable of guide a security engineer, or system administrator, to iden-tify alerts root causes, malicious or not, and allow the identification of malicious traffic and false positives. Moreover, describes modern malwares propagation mechanisms, presents methods to detect malwares through analysis of IDS alerts and false positives reduction. ARCA combines an aggregation method based on Relative Uncertainty with Apriori, a frequent itemset mining algorithm. Tests with 2 real datasets show an 88% reduction in the amount of alerts to be analyzed without previous knowledge of network infrastructure. |
publishDate |
2014 |
dc.date.issued.fl_str_mv |
2014-09-08 |
dc.date.accessioned.fl_str_mv |
2015-05-15T14:58:14Z |
dc.date.available.fl_str_mv |
2015-05-15T14:58:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/13946 |
dc.identifier.dark.fl_str_mv |
ark:/64986/0013000002cc8 |
url |
https://repositorio.ufpe.br/handle/123456789/13946 |
identifier_str_mv |
ark:/64986/0013000002cc8 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/13946/5/DISSERTA%c3%87%c3%83O%20Daniel%20Ara%c3%bajo%20Melo.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/13946/1/DISSERTA%c3%87%c3%83O%20Daniel%20Ara%c3%bajo%20Melo.pdf https://repositorio.ufpe.br/bitstream/123456789/13946/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/13946/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/13946/4/DISSERTA%c3%87%c3%83O%20Daniel%20Ara%c3%bajo%20Melo.pdf.txt |
bitstream.checksum.fl_str_mv |
900a58af340d5e8727d2e1e09b05de29 cdf9ac0421311267960355f9d6ca4479 66e71c371cc565284e70f40736c94386 4b8a02c7f2818eaf00dcf2260dd5eb08 0296494af7c8c7afe4526857ff2ae14b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172699663630336 |