Deformação intracontinental no interior do terreno Alto Moxotó : caso de estudo da região de Sumé, Paraíba

Detalhes bibliográficos
Autor(a) principal: CUNHA, Allan Alcântara Paiva da
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/0013000009qw9
Texto Completo: https://repositorio.ufpe.br/handle/123456789/49006
Resumo: Prematuridade é quando a criança nasce com menos de 37 semanas completas de gestação, sendo considerado um problema de saúde global, e ainda uma das principais consequências de mortes em neonatais e infantis menores de cinco anos de idade. A taxa de parto prematuro pode variar de acordo com a região geográfica e o nível de renda, mantendo uma maior frequência em países subdesenvolvidos. Nos países desenvolvidos, ele é amplamente avaliado como forma de compreender as causas e na criação de ações preventivas. Nesta pesquisa, foi proposta a utilização de algoritmos de aprendizado de máquina para predição de parto prematuro em em gestantes únicas, utilizando dados das capitais brasileiras. Foi verificado se os dois primeiros anos (2020-2021) da pandemia COVID-19 trouxeram impactos significativos para as estimativas dos modelos testados, em comparação ao que foi constatado na base de treinamento. Foram utilizados 6 classificadores de aprendizagem de máquina: Árvore de Decisão, Floresta Aleatória, Regressão Logística, Adaptive Boosting, Análise de Discriminante Linear e Rede Neural do tipo Multi-layer Perceptron, analisando as métricas de acurácia, precisão, revocação, F1-SCORE e área sobre a curva r eceiver operating characteristic. Portanto, com o processamento desses resultados, foi possível verificar a predição de parto prematuro com dados secundários no período de pandemia. A AUC dos modelos na base de validação variou de 0,7052 a 0,7729 (base sem balanceamento) e de 0,7199 a 0,7717 (base com balanceamento). Os resultados demonstraram que a COVID-19 impactou os modelos de Regressão logística, Análise discriminante linear e Multilayer perceptron (os quais são considerados estáveis), enquanto que os modelos baseados em árvore (Adaboost, Floresta aleatória e Árvore de decisão) não apresentam boa aderência à base de treino, devendo ser utilizados com cautela ou desconsiderados.
id UFPE_f0ccc87a6b8df38b6de0649795beb8cd
oai_identifier_str oai:repositorio.ufpe.br:123456789/49006
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling CUNHA, Allan Alcântara Paiva dahttp://lattes.cnpq.br/0481472238325704http://lattes.cnpq.br/1777617814611210SANTOS, Lauro Cézar Montefalco de Lira2023-02-09T12:15:22Z2023-02-09T12:15:22Z2022-04-18CUNHA, Allan Alcântara Paiva da. Deformação intracontinental no interior do terreno Alto Moxotó: caso de estudo da região de Sumé, Paraíba. 2022. Dissertação (Mestrado em Geociências) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/49006ark:/64986/0013000009qw9Prematuridade é quando a criança nasce com menos de 37 semanas completas de gestação, sendo considerado um problema de saúde global, e ainda uma das principais consequências de mortes em neonatais e infantis menores de cinco anos de idade. A taxa de parto prematuro pode variar de acordo com a região geográfica e o nível de renda, mantendo uma maior frequência em países subdesenvolvidos. Nos países desenvolvidos, ele é amplamente avaliado como forma de compreender as causas e na criação de ações preventivas. Nesta pesquisa, foi proposta a utilização de algoritmos de aprendizado de máquina para predição de parto prematuro em em gestantes únicas, utilizando dados das capitais brasileiras. Foi verificado se os dois primeiros anos (2020-2021) da pandemia COVID-19 trouxeram impactos significativos para as estimativas dos modelos testados, em comparação ao que foi constatado na base de treinamento. Foram utilizados 6 classificadores de aprendizagem de máquina: Árvore de Decisão, Floresta Aleatória, Regressão Logística, Adaptive Boosting, Análise de Discriminante Linear e Rede Neural do tipo Multi-layer Perceptron, analisando as métricas de acurácia, precisão, revocação, F1-SCORE e área sobre a curva r eceiver operating characteristic. Portanto, com o processamento desses resultados, foi possível verificar a predição de parto prematuro com dados secundários no período de pandemia. A AUC dos modelos na base de validação variou de 0,7052 a 0,7729 (base sem balanceamento) e de 0,7199 a 0,7717 (base com balanceamento). Os resultados demonstraram que a COVID-19 impactou os modelos de Regressão logística, Análise discriminante linear e Multilayer perceptron (os quais são considerados estáveis), enquanto que os modelos baseados em árvore (Adaboost, Floresta aleatória e Árvore de decisão) não apresentam boa aderência à base de treino, devendo ser utilizados com cautela ou desconsiderados.CAPESPrematurity is when a child is born with less than 37 completed weeks of gestation, being considered a global health problem, and still one of the main consequences of deaths in neonatal and five-year-old children. The premature birth rate may vary according to geographic region and income level, maintaining a higher frequency in underdeveloped countries. In the countries included, it is widely considered as a way of understanding the causes and creating preventive actions. In this research, the use of machine learning algorithms was proposed to predict premature birth in singletons, using data from Brazilian capitals. It was verified whether the first two years (2020-2021) of the COVID-19 pandemic had impacts on the estimates of the tested models, compared to what was found in the training base. Six machine learning classifiers were used: Decision Tree, Random Forest, Logistic Regression, Adaptive Boosting, Linear Discriminant Analysis and Multi-layer Perceptron Neural Network, analyzing the metrics of accuracy, precision, recall, F1-SCORE and area under curve r eceiver operational characteristic. Therefore, with the processing of these results, it was possible to verify the prediction of premature birth with secondary data in the pandemic period. The AUC of the models in the validation base ranges from 0.7052 to 0.7729 (unbalanced base) and from 0.7199 to 0.7717 (balanced base). The impressive results that COVID-19 impacted Logistic Regression, Linear Discriminant Analysis and Multilayer perceptron models (which are considered stable), while tree-based models (Adaboost, Random Forest and Decision Tree) did not show good adherence based on training, and should be used with caution or disregarded.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em GeocienciasUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessGeociênciasDeformação progressivaTerreno Alto MoxotóDeformação intracontinental no interior do terreno Alto Moxotó : caso de estudo da região de Sumé, Paraíbainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPECC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49006/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49006/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTDISSERTAÇÃO Allan Alcântara Paiva da Cunha.pdf.txtDISSERTAÇÃO Allan Alcântara Paiva da Cunha.pdf.txtExtracted texttext/plain84461https://repositorio.ufpe.br/bitstream/123456789/49006/4/DISSERTA%c3%87%c3%83O%20Allan%20Alc%c3%a2ntara%20Paiva%20da%20Cunha.pdf.txt17d45a7e0faddbb5363776b2d87c39c2MD54THUMBNAILDISSERTAÇÃO Allan Alcântara Paiva da Cunha.pdf.jpgDISSERTAÇÃO Allan Alcântara Paiva da Cunha.pdf.jpgGenerated Thumbnailimage/jpeg1257https://repositorio.ufpe.br/bitstream/123456789/49006/5/DISSERTA%c3%87%c3%83O%20Allan%20Alc%c3%a2ntara%20Paiva%20da%20Cunha.pdf.jpg05fdbbd1f9ed2e5660a54be79d2d5824MD55ORIGINALDISSERTAÇÃO Allan Alcântara Paiva da Cunha.pdfDISSERTAÇÃO Allan Alcântara Paiva da Cunha.pdfapplication/pdf3516127https://repositorio.ufpe.br/bitstream/123456789/49006/1/DISSERTA%c3%87%c3%83O%20Allan%20Alc%c3%a2ntara%20Paiva%20da%20Cunha.pdf25392a551d9513f2d6c297b2460f4250MD51123456789/490062023-02-10 02:20:49.945oai:repositorio.ufpe.br:123456789/49006VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-02-10T05:20:49Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Deformação intracontinental no interior do terreno Alto Moxotó : caso de estudo da região de Sumé, Paraíba
title Deformação intracontinental no interior do terreno Alto Moxotó : caso de estudo da região de Sumé, Paraíba
spellingShingle Deformação intracontinental no interior do terreno Alto Moxotó : caso de estudo da região de Sumé, Paraíba
CUNHA, Allan Alcântara Paiva da
Geociências
Deformação progressiva
Terreno Alto Moxotó
title_short Deformação intracontinental no interior do terreno Alto Moxotó : caso de estudo da região de Sumé, Paraíba
title_full Deformação intracontinental no interior do terreno Alto Moxotó : caso de estudo da região de Sumé, Paraíba
title_fullStr Deformação intracontinental no interior do terreno Alto Moxotó : caso de estudo da região de Sumé, Paraíba
title_full_unstemmed Deformação intracontinental no interior do terreno Alto Moxotó : caso de estudo da região de Sumé, Paraíba
title_sort Deformação intracontinental no interior do terreno Alto Moxotó : caso de estudo da região de Sumé, Paraíba
author CUNHA, Allan Alcântara Paiva da
author_facet CUNHA, Allan Alcântara Paiva da
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0481472238325704
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/1777617814611210
dc.contributor.author.fl_str_mv CUNHA, Allan Alcântara Paiva da
dc.contributor.advisor1.fl_str_mv SANTOS, Lauro Cézar Montefalco de Lira
contributor_str_mv SANTOS, Lauro Cézar Montefalco de Lira
dc.subject.por.fl_str_mv Geociências
Deformação progressiva
Terreno Alto Moxotó
topic Geociências
Deformação progressiva
Terreno Alto Moxotó
description Prematuridade é quando a criança nasce com menos de 37 semanas completas de gestação, sendo considerado um problema de saúde global, e ainda uma das principais consequências de mortes em neonatais e infantis menores de cinco anos de idade. A taxa de parto prematuro pode variar de acordo com a região geográfica e o nível de renda, mantendo uma maior frequência em países subdesenvolvidos. Nos países desenvolvidos, ele é amplamente avaliado como forma de compreender as causas e na criação de ações preventivas. Nesta pesquisa, foi proposta a utilização de algoritmos de aprendizado de máquina para predição de parto prematuro em em gestantes únicas, utilizando dados das capitais brasileiras. Foi verificado se os dois primeiros anos (2020-2021) da pandemia COVID-19 trouxeram impactos significativos para as estimativas dos modelos testados, em comparação ao que foi constatado na base de treinamento. Foram utilizados 6 classificadores de aprendizagem de máquina: Árvore de Decisão, Floresta Aleatória, Regressão Logística, Adaptive Boosting, Análise de Discriminante Linear e Rede Neural do tipo Multi-layer Perceptron, analisando as métricas de acurácia, precisão, revocação, F1-SCORE e área sobre a curva r eceiver operating characteristic. Portanto, com o processamento desses resultados, foi possível verificar a predição de parto prematuro com dados secundários no período de pandemia. A AUC dos modelos na base de validação variou de 0,7052 a 0,7729 (base sem balanceamento) e de 0,7199 a 0,7717 (base com balanceamento). Os resultados demonstraram que a COVID-19 impactou os modelos de Regressão logística, Análise discriminante linear e Multilayer perceptron (os quais são considerados estáveis), enquanto que os modelos baseados em árvore (Adaboost, Floresta aleatória e Árvore de decisão) não apresentam boa aderência à base de treino, devendo ser utilizados com cautela ou desconsiderados.
publishDate 2022
dc.date.issued.fl_str_mv 2022-04-18
dc.date.accessioned.fl_str_mv 2023-02-09T12:15:22Z
dc.date.available.fl_str_mv 2023-02-09T12:15:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CUNHA, Allan Alcântara Paiva da. Deformação intracontinental no interior do terreno Alto Moxotó: caso de estudo da região de Sumé, Paraíba. 2022. Dissertação (Mestrado em Geociências) – Universidade Federal de Pernambuco, Recife, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/49006
dc.identifier.dark.fl_str_mv ark:/64986/0013000009qw9
identifier_str_mv CUNHA, Allan Alcântara Paiva da. Deformação intracontinental no interior do terreno Alto Moxotó: caso de estudo da região de Sumé, Paraíba. 2022. Dissertação (Mestrado em Geociências) – Universidade Federal de Pernambuco, Recife, 2022.
ark:/64986/0013000009qw9
url https://repositorio.ufpe.br/handle/123456789/49006
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Geociencias
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/49006/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/49006/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/49006/4/DISSERTA%c3%87%c3%83O%20Allan%20Alc%c3%a2ntara%20Paiva%20da%20Cunha.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/49006/5/DISSERTA%c3%87%c3%83O%20Allan%20Alc%c3%a2ntara%20Paiva%20da%20Cunha.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/49006/1/DISSERTA%c3%87%c3%83O%20Allan%20Alc%c3%a2ntara%20Paiva%20da%20Cunha.pdf
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
17d45a7e0faddbb5363776b2d87c39c2
05fdbbd1f9ed2e5660a54be79d2d5824
25392a551d9513f2d6c297b2460f4250
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1814448221028614144