Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field

Detalhes bibliográficos
Autor(a) principal: BIBIANO FILHO, Anderson de Souza
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000d8j4
Texto Completo: https://repositorio.ufpe.br/handle/123456789/49649
Resumo: At zero temperature, thermal fluctuation is eliminated and phase transitions will occur due to quantum fluctuations that arise from the Heisenberg uncertainty principle. Magnetic insulators, described by the Heisenberg model Hamiltonian, are a known class of physical systems that can undergo quantum phase transitions when submitted to a magnetic field. The magnetic field induces the transition by closing energy gaps through the Zeeman effect. Examples of systems that undergo these transitions are the antiferromagnetic spin-1 chain, the antiferromagnetic spin- 1/2 ladder, the ferrimagnetic mixed spin-1 and spin- 1/2 chains and ladders. The presence of a gap in the energy spectrum with zero magnetic field leads to a magnetization plateau in the magnetization curve. We use the density matrix renormalization group to investigate the magnetization curves of the mixed spin-1 and spin- 1/2 ladder, for antiferromagnetic and ferro- magnetic couplings between the ladder legs J⊥. For J⊥ > 0, the ground-state is ferrimagnetic with the total spin equal to 1/3 of the saturation value, in accord with the Lieb-Mattis theorem. The magnetization curve presents a plateau at total magnetization 1/3 of the saturation value, the 1/3-plateau since the ground state has a gap to excitations that increase the total spin by 1 unit. Decreasing J⊥ below zero, the ground state becomes a singlet, but the 1/3-plateau survives down to a critical value J⊥ = Jc. Given that the gap closes with the magnetization fixed, it is a Kosterlitz-Thouless transition type. To determine Jc, we have made a finite-size scale analysis of the plateau width.
id UFPE_f4e259b9b462d1158dfc79b1b6a683e3
oai_identifier_str oai:repositorio.ufpe.br:123456789/49649
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling BIBIANO FILHO, Anderson de Souzahttp://lattes.cnpq.br/3182736828254922http://lattes.cnpq.br/7977378392052504MONTENEGRO FILHO, Renê Rodrigues2023-04-13T12:33:14Z2023-04-13T12:33:14Z2022-12-20BIBIANO FILHO, Anderson de Souza. Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field. 2022. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/49649ark:/64986/001300000d8j4At zero temperature, thermal fluctuation is eliminated and phase transitions will occur due to quantum fluctuations that arise from the Heisenberg uncertainty principle. Magnetic insulators, described by the Heisenberg model Hamiltonian, are a known class of physical systems that can undergo quantum phase transitions when submitted to a magnetic field. The magnetic field induces the transition by closing energy gaps through the Zeeman effect. Examples of systems that undergo these transitions are the antiferromagnetic spin-1 chain, the antiferromagnetic spin- 1/2 ladder, the ferrimagnetic mixed spin-1 and spin- 1/2 chains and ladders. The presence of a gap in the energy spectrum with zero magnetic field leads to a magnetization plateau in the magnetization curve. We use the density matrix renormalization group to investigate the magnetization curves of the mixed spin-1 and spin- 1/2 ladder, for antiferromagnetic and ferro- magnetic couplings between the ladder legs J⊥. For J⊥ > 0, the ground-state is ferrimagnetic with the total spin equal to 1/3 of the saturation value, in accord with the Lieb-Mattis theorem. The magnetization curve presents a plateau at total magnetization 1/3 of the saturation value, the 1/3-plateau since the ground state has a gap to excitations that increase the total spin by 1 unit. Decreasing J⊥ below zero, the ground state becomes a singlet, but the 1/3-plateau survives down to a critical value J⊥ = Jc. Given that the gap closes with the magnetization fixed, it is a Kosterlitz-Thouless transition type. To determine Jc, we have made a finite-size scale analysis of the plateau width.CAPESEm temperatura zero, flutuação térmica é eliminada e transições de fase irão ocorrer devido à flutuações que surgem do princípio da incerteza de Heisenberg. Isolantes magnéticos, descritos pelo modelo do Hamiltoniano de Heisenberg, são uma conhecida classe de sistemas que podem ser submetidos a transições de fase quântica quando expostos a um campo magnético. O campo magnético induz a transição fechando gaps de energia através do efeito Zeeman. Exemplos de sistemas que passam por essas transições são a cadeia antiferromagnética de spin-1, a cadeia escada antiferromagnética de spin- 1/2, a cadeia ferrimagnética e a cadeia escada ferrimagnética de spin misturado com spin-1 e spin- 1/2. A presença do gap no espectro de energia com campo magnético zero leva a um plateau de magnetização na curva de magnetização. Usamos o grupo de renormalização da matriz densidade para investigar curvas de magnetização da cadeia escada de spin misturado com spin-1 e spin- 1/2, para acoplamento antiferromagnético e ferromagnético entre as pernas da escada J⊥. Para J⊥ > 0, o estado fundamental é ferrimagnético com spin total igual a 1/3 do valor de saturação, o 1/3-plateau dado que o estado fundamental possui um gap para excitações que aumentam o spin total em 1 unidade. Diminuindo J⊥ abaixo de zero, o estado fundamental se torna um singleto, mas o 1/3-plateau sobrevive até o valor crítico J⊥ = Jc. Dado que o gap fecha sob magnetização constante, é uma transição do tipo Kosterlitz-Thouless. Para determinar Jc, fizemos análise de escala finita da largura do plateau.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFísica da matéria condensada e de materiaisTransições de fase quânticaModelo do Hamiltoniano de HeisenbergKosterlitz-Thouless transition in a mixed-spin ladder under a magnetic fieldinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdfDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdfapplication/pdf2351426https://repositorio.ufpe.br/bitstream/123456789/49649/1/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf588cbcb7192b6c1d2a556fb7b2adb897MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49649/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49649/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdf.txtDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdf.txtExtracted texttext/plain143885https://repositorio.ufpe.br/bitstream/123456789/49649/4/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf.txt1d04b4f81bce596ec5bc038603ca363cMD54THUMBNAILDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdf.jpgDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdf.jpgGenerated Thumbnailimage/jpeg1198https://repositorio.ufpe.br/bitstream/123456789/49649/5/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf.jpgc19dc53f7b023304439b802b17281982MD55123456789/496492023-04-14 02:16:58.146oai:repositorio.ufpe.br:123456789/49649VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-04-14T05:16:58Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
title Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
spellingShingle Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
BIBIANO FILHO, Anderson de Souza
Física da matéria condensada e de materiais
Transições de fase quântica
Modelo do Hamiltoniano de Heisenberg
title_short Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
title_full Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
title_fullStr Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
title_full_unstemmed Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
title_sort Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
author BIBIANO FILHO, Anderson de Souza
author_facet BIBIANO FILHO, Anderson de Souza
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3182736828254922
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/7977378392052504
dc.contributor.author.fl_str_mv BIBIANO FILHO, Anderson de Souza
dc.contributor.advisor1.fl_str_mv MONTENEGRO FILHO, Renê Rodrigues
contributor_str_mv MONTENEGRO FILHO, Renê Rodrigues
dc.subject.por.fl_str_mv Física da matéria condensada e de materiais
Transições de fase quântica
Modelo do Hamiltoniano de Heisenberg
topic Física da matéria condensada e de materiais
Transições de fase quântica
Modelo do Hamiltoniano de Heisenberg
description At zero temperature, thermal fluctuation is eliminated and phase transitions will occur due to quantum fluctuations that arise from the Heisenberg uncertainty principle. Magnetic insulators, described by the Heisenberg model Hamiltonian, are a known class of physical systems that can undergo quantum phase transitions when submitted to a magnetic field. The magnetic field induces the transition by closing energy gaps through the Zeeman effect. Examples of systems that undergo these transitions are the antiferromagnetic spin-1 chain, the antiferromagnetic spin- 1/2 ladder, the ferrimagnetic mixed spin-1 and spin- 1/2 chains and ladders. The presence of a gap in the energy spectrum with zero magnetic field leads to a magnetization plateau in the magnetization curve. We use the density matrix renormalization group to investigate the magnetization curves of the mixed spin-1 and spin- 1/2 ladder, for antiferromagnetic and ferro- magnetic couplings between the ladder legs J⊥. For J⊥ > 0, the ground-state is ferrimagnetic with the total spin equal to 1/3 of the saturation value, in accord with the Lieb-Mattis theorem. The magnetization curve presents a plateau at total magnetization 1/3 of the saturation value, the 1/3-plateau since the ground state has a gap to excitations that increase the total spin by 1 unit. Decreasing J⊥ below zero, the ground state becomes a singlet, but the 1/3-plateau survives down to a critical value J⊥ = Jc. Given that the gap closes with the magnetization fixed, it is a Kosterlitz-Thouless transition type. To determine Jc, we have made a finite-size scale analysis of the plateau width.
publishDate 2022
dc.date.issued.fl_str_mv 2022-12-20
dc.date.accessioned.fl_str_mv 2023-04-13T12:33:14Z
dc.date.available.fl_str_mv 2023-04-13T12:33:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BIBIANO FILHO, Anderson de Souza. Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field. 2022. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2022.
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/49649
dc.identifier.dark.fl_str_mv ark:/64986/001300000d8j4
identifier_str_mv BIBIANO FILHO, Anderson de Souza. Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field. 2022. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2022.
ark:/64986/001300000d8j4
url https://repositorio.ufpe.br/handle/123456789/49649
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Fisica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/49649/1/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf
https://repositorio.ufpe.br/bitstream/123456789/49649/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/49649/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/49649/4/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf.txt
https://repositorio.ufpe.br/bitstream/123456789/49649/5/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf.jpg
bitstream.checksum.fl_str_mv 588cbcb7192b6c1d2a556fb7b2adb897
e39d27027a6cc9cb039ad269a5db8e34
5e89a1613ddc8510c6576f4b23a78973
1d04b4f81bce596ec5bc038603ca363c
c19dc53f7b023304439b802b17281982
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172796880257024