Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000d8j4 |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/49649 |
Resumo: | At zero temperature, thermal fluctuation is eliminated and phase transitions will occur due to quantum fluctuations that arise from the Heisenberg uncertainty principle. Magnetic insulators, described by the Heisenberg model Hamiltonian, are a known class of physical systems that can undergo quantum phase transitions when submitted to a magnetic field. The magnetic field induces the transition by closing energy gaps through the Zeeman effect. Examples of systems that undergo these transitions are the antiferromagnetic spin-1 chain, the antiferromagnetic spin- 1/2 ladder, the ferrimagnetic mixed spin-1 and spin- 1/2 chains and ladders. The presence of a gap in the energy spectrum with zero magnetic field leads to a magnetization plateau in the magnetization curve. We use the density matrix renormalization group to investigate the magnetization curves of the mixed spin-1 and spin- 1/2 ladder, for antiferromagnetic and ferro- magnetic couplings between the ladder legs J⊥. For J⊥ > 0, the ground-state is ferrimagnetic with the total spin equal to 1/3 of the saturation value, in accord with the Lieb-Mattis theorem. The magnetization curve presents a plateau at total magnetization 1/3 of the saturation value, the 1/3-plateau since the ground state has a gap to excitations that increase the total spin by 1 unit. Decreasing J⊥ below zero, the ground state becomes a singlet, but the 1/3-plateau survives down to a critical value J⊥ = Jc. Given that the gap closes with the magnetization fixed, it is a Kosterlitz-Thouless transition type. To determine Jc, we have made a finite-size scale analysis of the plateau width. |
id |
UFPE_f4e259b9b462d1158dfc79b1b6a683e3 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/49649 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
BIBIANO FILHO, Anderson de Souzahttp://lattes.cnpq.br/3182736828254922http://lattes.cnpq.br/7977378392052504MONTENEGRO FILHO, Renê Rodrigues2023-04-13T12:33:14Z2023-04-13T12:33:14Z2022-12-20BIBIANO FILHO, Anderson de Souza. Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field. 2022. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/49649ark:/64986/001300000d8j4At zero temperature, thermal fluctuation is eliminated and phase transitions will occur due to quantum fluctuations that arise from the Heisenberg uncertainty principle. Magnetic insulators, described by the Heisenberg model Hamiltonian, are a known class of physical systems that can undergo quantum phase transitions when submitted to a magnetic field. The magnetic field induces the transition by closing energy gaps through the Zeeman effect. Examples of systems that undergo these transitions are the antiferromagnetic spin-1 chain, the antiferromagnetic spin- 1/2 ladder, the ferrimagnetic mixed spin-1 and spin- 1/2 chains and ladders. The presence of a gap in the energy spectrum with zero magnetic field leads to a magnetization plateau in the magnetization curve. We use the density matrix renormalization group to investigate the magnetization curves of the mixed spin-1 and spin- 1/2 ladder, for antiferromagnetic and ferro- magnetic couplings between the ladder legs J⊥. For J⊥ > 0, the ground-state is ferrimagnetic with the total spin equal to 1/3 of the saturation value, in accord with the Lieb-Mattis theorem. The magnetization curve presents a plateau at total magnetization 1/3 of the saturation value, the 1/3-plateau since the ground state has a gap to excitations that increase the total spin by 1 unit. Decreasing J⊥ below zero, the ground state becomes a singlet, but the 1/3-plateau survives down to a critical value J⊥ = Jc. Given that the gap closes with the magnetization fixed, it is a Kosterlitz-Thouless transition type. To determine Jc, we have made a finite-size scale analysis of the plateau width.CAPESEm temperatura zero, flutuação térmica é eliminada e transições de fase irão ocorrer devido à flutuações que surgem do princípio da incerteza de Heisenberg. Isolantes magnéticos, descritos pelo modelo do Hamiltoniano de Heisenberg, são uma conhecida classe de sistemas que podem ser submetidos a transições de fase quântica quando expostos a um campo magnético. O campo magnético induz a transição fechando gaps de energia através do efeito Zeeman. Exemplos de sistemas que passam por essas transições são a cadeia antiferromagnética de spin-1, a cadeia escada antiferromagnética de spin- 1/2, a cadeia ferrimagnética e a cadeia escada ferrimagnética de spin misturado com spin-1 e spin- 1/2. A presença do gap no espectro de energia com campo magnético zero leva a um plateau de magnetização na curva de magnetização. Usamos o grupo de renormalização da matriz densidade para investigar curvas de magnetização da cadeia escada de spin misturado com spin-1 e spin- 1/2, para acoplamento antiferromagnético e ferromagnético entre as pernas da escada J⊥. Para J⊥ > 0, o estado fundamental é ferrimagnético com spin total igual a 1/3 do valor de saturação, o 1/3-plateau dado que o estado fundamental possui um gap para excitações que aumentam o spin total em 1 unidade. Diminuindo J⊥ abaixo de zero, o estado fundamental se torna um singleto, mas o 1/3-plateau sobrevive até o valor crítico J⊥ = Jc. Dado que o gap fecha sob magnetização constante, é uma transição do tipo Kosterlitz-Thouless. Para determinar Jc, fizemos análise de escala finita da largura do plateau.engUniversidade Federal de PernambucoPrograma de Pos Graduacao em FisicaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessFísica da matéria condensada e de materiaisTransições de fase quânticaModelo do Hamiltoniano de HeisenbergKosterlitz-Thouless transition in a mixed-spin ladder under a magnetic fieldinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdfDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdfapplication/pdf2351426https://repositorio.ufpe.br/bitstream/123456789/49649/1/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf588cbcb7192b6c1d2a556fb7b2adb897MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49649/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49649/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdf.txtDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdf.txtExtracted texttext/plain143885https://repositorio.ufpe.br/bitstream/123456789/49649/4/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf.txt1d04b4f81bce596ec5bc038603ca363cMD54THUMBNAILDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdf.jpgDISSERTAÇÃO Anderson de Souza Bibiano Filho.pdf.jpgGenerated Thumbnailimage/jpeg1198https://repositorio.ufpe.br/bitstream/123456789/49649/5/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf.jpgc19dc53f7b023304439b802b17281982MD55123456789/496492023-04-14 02:16:58.146oai:repositorio.ufpe.br:123456789/49649VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-04-14T05:16:58Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field |
title |
Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field |
spellingShingle |
Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field BIBIANO FILHO, Anderson de Souza Física da matéria condensada e de materiais Transições de fase quântica Modelo do Hamiltoniano de Heisenberg |
title_short |
Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field |
title_full |
Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field |
title_fullStr |
Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field |
title_full_unstemmed |
Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field |
title_sort |
Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field |
author |
BIBIANO FILHO, Anderson de Souza |
author_facet |
BIBIANO FILHO, Anderson de Souza |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3182736828254922 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/7977378392052504 |
dc.contributor.author.fl_str_mv |
BIBIANO FILHO, Anderson de Souza |
dc.contributor.advisor1.fl_str_mv |
MONTENEGRO FILHO, Renê Rodrigues |
contributor_str_mv |
MONTENEGRO FILHO, Renê Rodrigues |
dc.subject.por.fl_str_mv |
Física da matéria condensada e de materiais Transições de fase quântica Modelo do Hamiltoniano de Heisenberg |
topic |
Física da matéria condensada e de materiais Transições de fase quântica Modelo do Hamiltoniano de Heisenberg |
description |
At zero temperature, thermal fluctuation is eliminated and phase transitions will occur due to quantum fluctuations that arise from the Heisenberg uncertainty principle. Magnetic insulators, described by the Heisenberg model Hamiltonian, are a known class of physical systems that can undergo quantum phase transitions when submitted to a magnetic field. The magnetic field induces the transition by closing energy gaps through the Zeeman effect. Examples of systems that undergo these transitions are the antiferromagnetic spin-1 chain, the antiferromagnetic spin- 1/2 ladder, the ferrimagnetic mixed spin-1 and spin- 1/2 chains and ladders. The presence of a gap in the energy spectrum with zero magnetic field leads to a magnetization plateau in the magnetization curve. We use the density matrix renormalization group to investigate the magnetization curves of the mixed spin-1 and spin- 1/2 ladder, for antiferromagnetic and ferro- magnetic couplings between the ladder legs J⊥. For J⊥ > 0, the ground-state is ferrimagnetic with the total spin equal to 1/3 of the saturation value, in accord with the Lieb-Mattis theorem. The magnetization curve presents a plateau at total magnetization 1/3 of the saturation value, the 1/3-plateau since the ground state has a gap to excitations that increase the total spin by 1 unit. Decreasing J⊥ below zero, the ground state becomes a singlet, but the 1/3-plateau survives down to a critical value J⊥ = Jc. Given that the gap closes with the magnetization fixed, it is a Kosterlitz-Thouless transition type. To determine Jc, we have made a finite-size scale analysis of the plateau width. |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022-12-20 |
dc.date.accessioned.fl_str_mv |
2023-04-13T12:33:14Z |
dc.date.available.fl_str_mv |
2023-04-13T12:33:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BIBIANO FILHO, Anderson de Souza. Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field. 2022. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/49649 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000d8j4 |
identifier_str_mv |
BIBIANO FILHO, Anderson de Souza. Kosterlitz-Thouless transition in a mixed-spin ladder under a magnetic field. 2022. Dissertação (Mestrado em Física) – Universidade Federal de Pernambuco, Recife, 2022. ark:/64986/001300000d8j4 |
url |
https://repositorio.ufpe.br/handle/123456789/49649 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Fisica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/49649/1/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf https://repositorio.ufpe.br/bitstream/123456789/49649/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/49649/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/49649/4/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/49649/5/DISSERTA%c3%87%c3%83O%20Anderson%20de%20Souza%20Bibiano%20Filho.pdf.jpg |
bitstream.checksum.fl_str_mv |
588cbcb7192b6c1d2a556fb7b2adb897 e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 1d04b4f81bce596ec5bc038603ca363c c19dc53f7b023304439b802b17281982 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172796880257024 |