O teorema de Hooley e a conjectura de Artin para raízes primitivas

Detalhes bibliográficos
Autor(a) principal: SILVA, Ricardo Francisco da
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFPE
dARK ID: ark:/64986/001300000v67j
Texto Completo: https://repositorio.ufpe.br/handle/123456789/31749
Resumo: Desde que Artin formulou sua conjectura em 1927, muitos matemáticos tentaram demonstrá-la, mas não obtiveram um resultado significativo. Entretanto, em 1967 houve um avanço notório em torno da conjectura de Artin com o trabalho de Hooley. De fato, o teorema de Hooley foi o primeiro resultado de grande importância no que diz respeito à conjectura, fornecendo uma prova rigorosa para a mesma, assumindo a Hipótese de Riemann Generalizada para funções zeta de Dedekind de certos corpos de números. Temos por objetivo, neste trabalho, apresentar os detalhes da demonstração do teorema de Hooley. Detalharemos o raciocínio heurístico que levou Artin a formular a sua conjectura. Veremos que a relação com a Hipótese de Riemann aparece quando Hooley usa uma versão efetiva do teorema de Chebotarev, que também ´e um resultado de grande relevância em Teoria dos Números. Além disso, veremos também como o trabalho de Hooley tem relação com os métodos de crivos, demonstrando a famosa desigualdade de Brun-Titchmarsh via crivo de Selberg.
id UFPE_fee462376ccdd7b967635d5e24721c9d
oai_identifier_str oai:repositorio.ufpe.br:123456789/31749
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling SILVA, Ricardo Francisco dahttp://lattes.cnpq.br/4450242952877579http://lattes.cnpq.br/0559184209749319LEANDRO, Eduardo Shirlippe Goes2019-08-09T23:01:14Z2019-08-09T23:01:14Z2018-02-27https://repositorio.ufpe.br/handle/123456789/31749ark:/64986/001300000v67jDesde que Artin formulou sua conjectura em 1927, muitos matemáticos tentaram demonstrá-la, mas não obtiveram um resultado significativo. Entretanto, em 1967 houve um avanço notório em torno da conjectura de Artin com o trabalho de Hooley. De fato, o teorema de Hooley foi o primeiro resultado de grande importância no que diz respeito à conjectura, fornecendo uma prova rigorosa para a mesma, assumindo a Hipótese de Riemann Generalizada para funções zeta de Dedekind de certos corpos de números. Temos por objetivo, neste trabalho, apresentar os detalhes da demonstração do teorema de Hooley. Detalharemos o raciocínio heurístico que levou Artin a formular a sua conjectura. Veremos que a relação com a Hipótese de Riemann aparece quando Hooley usa uma versão efetiva do teorema de Chebotarev, que também ´e um resultado de grande relevância em Teoria dos Números. Além disso, veremos também como o trabalho de Hooley tem relação com os métodos de crivos, demonstrando a famosa desigualdade de Brun-Titchmarsh via crivo de Selberg.CNPqSince Artin formulated his conjecture in 1927, many mathematicians attempted to demonstrate it, but did not obtain a significant result. However, in 1967 there was a notable advance around the Artin conjecture, with Hooley’s work. In fact, Hooley’s theorem was the first major result with respect to this conjecture, providing rigorous proof for it, assuming the Generalized Riemann Hypothesis for the Dedekind’s zeta functions of certain number fields. The purpose of this work is to present the details of the proof of Hooley’s theorem. We will detail the heuristic reasoning that led Artin to formulate his conjecture. We will see that the relation with the Riemann Hypothesis appears when Hooley uses an effective version of Chebotarev’s theorem, which is also a result of great relevance in Number Theory. In addition, we will also see how Hooley’s work relates to sieve methods, demonstrating the famous Brun-Titchmarsh inequality via the Selberg sieveporUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessTeoria dos númerosRaízes primitivasO teorema de Hooley e a conjectura de Artin para raízes primitivasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Ricardo Francisco da Silva.pdf.jpgDISSERTAÇÃO Ricardo Francisco da Silva.pdf.jpgGenerated Thumbnailimage/jpeg1250https://repositorio.ufpe.br/bitstream/123456789/31749/5/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdf.jpg8b152036e5c66e3165b988b65be84cc0MD55ORIGINALDISSERTAÇÃO Ricardo Francisco da Silva.pdfDISSERTAÇÃO Ricardo Francisco da Silva.pdfapplication/pdf524776https://repositorio.ufpe.br/bitstream/123456789/31749/1/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdfa6186846b233ceea2bef5f94b81010f1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/31749/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/31749/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTDISSERTAÇÃO Ricardo Francisco da Silva.pdf.txtDISSERTAÇÃO Ricardo Francisco da Silva.pdf.txtExtracted texttext/plain100148https://repositorio.ufpe.br/bitstream/123456789/31749/4/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdf.txt9b106eff7be69dab910617a0e4221781MD54123456789/317492019-10-25 10:09:18.437oai:repositorio.ufpe.br:123456789/31749TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T13:09:18Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.pt_BR.fl_str_mv O teorema de Hooley e a conjectura de Artin para raízes primitivas
title O teorema de Hooley e a conjectura de Artin para raízes primitivas
spellingShingle O teorema de Hooley e a conjectura de Artin para raízes primitivas
SILVA, Ricardo Francisco da
Teoria dos números
Raízes primitivas
title_short O teorema de Hooley e a conjectura de Artin para raízes primitivas
title_full O teorema de Hooley e a conjectura de Artin para raízes primitivas
title_fullStr O teorema de Hooley e a conjectura de Artin para raízes primitivas
title_full_unstemmed O teorema de Hooley e a conjectura de Artin para raízes primitivas
title_sort O teorema de Hooley e a conjectura de Artin para raízes primitivas
author SILVA, Ricardo Francisco da
author_facet SILVA, Ricardo Francisco da
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/4450242952877579
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/0559184209749319
dc.contributor.author.fl_str_mv SILVA, Ricardo Francisco da
dc.contributor.advisor1.fl_str_mv LEANDRO, Eduardo Shirlippe Goes
contributor_str_mv LEANDRO, Eduardo Shirlippe Goes
dc.subject.por.fl_str_mv Teoria dos números
Raízes primitivas
topic Teoria dos números
Raízes primitivas
description Desde que Artin formulou sua conjectura em 1927, muitos matemáticos tentaram demonstrá-la, mas não obtiveram um resultado significativo. Entretanto, em 1967 houve um avanço notório em torno da conjectura de Artin com o trabalho de Hooley. De fato, o teorema de Hooley foi o primeiro resultado de grande importância no que diz respeito à conjectura, fornecendo uma prova rigorosa para a mesma, assumindo a Hipótese de Riemann Generalizada para funções zeta de Dedekind de certos corpos de números. Temos por objetivo, neste trabalho, apresentar os detalhes da demonstração do teorema de Hooley. Detalharemos o raciocínio heurístico que levou Artin a formular a sua conjectura. Veremos que a relação com a Hipótese de Riemann aparece quando Hooley usa uma versão efetiva do teorema de Chebotarev, que também ´e um resultado de grande relevância em Teoria dos Números. Além disso, veremos também como o trabalho de Hooley tem relação com os métodos de crivos, demonstrando a famosa desigualdade de Brun-Titchmarsh via crivo de Selberg.
publishDate 2018
dc.date.issued.fl_str_mv 2018-02-27
dc.date.accessioned.fl_str_mv 2019-08-09T23:01:14Z
dc.date.available.fl_str_mv 2019-08-09T23:01:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/31749
dc.identifier.dark.fl_str_mv ark:/64986/001300000v67j
url https://repositorio.ufpe.br/handle/123456789/31749
identifier_str_mv ark:/64986/001300000v67j
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.publisher.program.fl_str_mv Programa de Pos Graduacao em Matematica
dc.publisher.initials.fl_str_mv UFPE
dc.publisher.country.fl_str_mv Brasil
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
bitstream.url.fl_str_mv https://repositorio.ufpe.br/bitstream/123456789/31749/5/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdf.jpg
https://repositorio.ufpe.br/bitstream/123456789/31749/1/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdf
https://repositorio.ufpe.br/bitstream/123456789/31749/2/license_rdf
https://repositorio.ufpe.br/bitstream/123456789/31749/3/license.txt
https://repositorio.ufpe.br/bitstream/123456789/31749/4/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdf.txt
bitstream.checksum.fl_str_mv 8b152036e5c66e3165b988b65be84cc0
a6186846b233ceea2bef5f94b81010f1
e39d27027a6cc9cb039ad269a5db8e34
bd573a5ca8288eb7272482765f819534
9b106eff7be69dab910617a0e4221781
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1815172922478690304