O teorema de Hooley e a conjectura de Artin para raízes primitivas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000v67j |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/31749 |
Resumo: | Desde que Artin formulou sua conjectura em 1927, muitos matemáticos tentaram demonstrá-la, mas não obtiveram um resultado significativo. Entretanto, em 1967 houve um avanço notório em torno da conjectura de Artin com o trabalho de Hooley. De fato, o teorema de Hooley foi o primeiro resultado de grande importância no que diz respeito à conjectura, fornecendo uma prova rigorosa para a mesma, assumindo a Hipótese de Riemann Generalizada para funções zeta de Dedekind de certos corpos de números. Temos por objetivo, neste trabalho, apresentar os detalhes da demonstração do teorema de Hooley. Detalharemos o raciocínio heurístico que levou Artin a formular a sua conjectura. Veremos que a relação com a Hipótese de Riemann aparece quando Hooley usa uma versão efetiva do teorema de Chebotarev, que também ´e um resultado de grande relevância em Teoria dos Números. Além disso, veremos também como o trabalho de Hooley tem relação com os métodos de crivos, demonstrando a famosa desigualdade de Brun-Titchmarsh via crivo de Selberg. |
id |
UFPE_fee462376ccdd7b967635d5e24721c9d |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/31749 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SILVA, Ricardo Francisco dahttp://lattes.cnpq.br/4450242952877579http://lattes.cnpq.br/0559184209749319LEANDRO, Eduardo Shirlippe Goes2019-08-09T23:01:14Z2019-08-09T23:01:14Z2018-02-27https://repositorio.ufpe.br/handle/123456789/31749ark:/64986/001300000v67jDesde que Artin formulou sua conjectura em 1927, muitos matemáticos tentaram demonstrá-la, mas não obtiveram um resultado significativo. Entretanto, em 1967 houve um avanço notório em torno da conjectura de Artin com o trabalho de Hooley. De fato, o teorema de Hooley foi o primeiro resultado de grande importância no que diz respeito à conjectura, fornecendo uma prova rigorosa para a mesma, assumindo a Hipótese de Riemann Generalizada para funções zeta de Dedekind de certos corpos de números. Temos por objetivo, neste trabalho, apresentar os detalhes da demonstração do teorema de Hooley. Detalharemos o raciocínio heurístico que levou Artin a formular a sua conjectura. Veremos que a relação com a Hipótese de Riemann aparece quando Hooley usa uma versão efetiva do teorema de Chebotarev, que também ´e um resultado de grande relevância em Teoria dos Números. Além disso, veremos também como o trabalho de Hooley tem relação com os métodos de crivos, demonstrando a famosa desigualdade de Brun-Titchmarsh via crivo de Selberg.CNPqSince Artin formulated his conjecture in 1927, many mathematicians attempted to demonstrate it, but did not obtain a significant result. However, in 1967 there was a notable advance around the Artin conjecture, with Hooley’s work. In fact, Hooley’s theorem was the first major result with respect to this conjecture, providing rigorous proof for it, assuming the Generalized Riemann Hypothesis for the Dedekind’s zeta functions of certain number fields. The purpose of this work is to present the details of the proof of Hooley’s theorem. We will detail the heuristic reasoning that led Artin to formulate his conjecture. We will see that the relation with the Riemann Hypothesis appears when Hooley uses an effective version of Chebotarev’s theorem, which is also a result of great relevance in Number Theory. In addition, we will also see how Hooley’s work relates to sieve methods, demonstrating the famous Brun-Titchmarsh inequality via the Selberg sieveporUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessTeoria dos númerosRaízes primitivasO teorema de Hooley e a conjectura de Artin para raízes primitivasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILDISSERTAÇÃO Ricardo Francisco da Silva.pdf.jpgDISSERTAÇÃO Ricardo Francisco da Silva.pdf.jpgGenerated Thumbnailimage/jpeg1250https://repositorio.ufpe.br/bitstream/123456789/31749/5/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdf.jpg8b152036e5c66e3165b988b65be84cc0MD55ORIGINALDISSERTAÇÃO Ricardo Francisco da Silva.pdfDISSERTAÇÃO Ricardo Francisco da Silva.pdfapplication/pdf524776https://repositorio.ufpe.br/bitstream/123456789/31749/1/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdfa6186846b233ceea2bef5f94b81010f1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/31749/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82310https://repositorio.ufpe.br/bitstream/123456789/31749/3/license.txtbd573a5ca8288eb7272482765f819534MD53TEXTDISSERTAÇÃO Ricardo Francisco da Silva.pdf.txtDISSERTAÇÃO Ricardo Francisco da Silva.pdf.txtExtracted texttext/plain100148https://repositorio.ufpe.br/bitstream/123456789/31749/4/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdf.txt9b106eff7be69dab910617a0e4221781MD54123456789/317492019-10-25 10:09:18.437oai:repositorio.ufpe.br:123456789/31749TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLCBkZWNsYXJhIHF1ZSBjdW1wcml1IHF1YWlzcXVlciBvYnJpZ2HDp8O1ZXMgZXhpZ2lkYXMgcGVsbyByZXNwZWN0aXZvIGNvbnRyYXRvIG91IGFjb3Jkby4KCkEgVUZQRSBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyhzKSBub21lKHMpIGRvKHMpIGF1dG9yIChlcykgZG9zIGRpcmVpdG9zIGRvIGRvY3VtZW50byBlbnRyZWd1ZSBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIHBhcmEgYWzDqW0gZG8gcHJldmlzdG8gbmEgYWzDrW5lYSBjKS4KRepositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T13:09:18Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
O teorema de Hooley e a conjectura de Artin para raízes primitivas |
title |
O teorema de Hooley e a conjectura de Artin para raízes primitivas |
spellingShingle |
O teorema de Hooley e a conjectura de Artin para raízes primitivas SILVA, Ricardo Francisco da Teoria dos números Raízes primitivas |
title_short |
O teorema de Hooley e a conjectura de Artin para raízes primitivas |
title_full |
O teorema de Hooley e a conjectura de Artin para raízes primitivas |
title_fullStr |
O teorema de Hooley e a conjectura de Artin para raízes primitivas |
title_full_unstemmed |
O teorema de Hooley e a conjectura de Artin para raízes primitivas |
title_sort |
O teorema de Hooley e a conjectura de Artin para raízes primitivas |
author |
SILVA, Ricardo Francisco da |
author_facet |
SILVA, Ricardo Francisco da |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/4450242952877579 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0559184209749319 |
dc.contributor.author.fl_str_mv |
SILVA, Ricardo Francisco da |
dc.contributor.advisor1.fl_str_mv |
LEANDRO, Eduardo Shirlippe Goes |
contributor_str_mv |
LEANDRO, Eduardo Shirlippe Goes |
dc.subject.por.fl_str_mv |
Teoria dos números Raízes primitivas |
topic |
Teoria dos números Raízes primitivas |
description |
Desde que Artin formulou sua conjectura em 1927, muitos matemáticos tentaram demonstrá-la, mas não obtiveram um resultado significativo. Entretanto, em 1967 houve um avanço notório em torno da conjectura de Artin com o trabalho de Hooley. De fato, o teorema de Hooley foi o primeiro resultado de grande importância no que diz respeito à conjectura, fornecendo uma prova rigorosa para a mesma, assumindo a Hipótese de Riemann Generalizada para funções zeta de Dedekind de certos corpos de números. Temos por objetivo, neste trabalho, apresentar os detalhes da demonstração do teorema de Hooley. Detalharemos o raciocínio heurístico que levou Artin a formular a sua conjectura. Veremos que a relação com a Hipótese de Riemann aparece quando Hooley usa uma versão efetiva do teorema de Chebotarev, que também ´e um resultado de grande relevância em Teoria dos Números. Além disso, veremos também como o trabalho de Hooley tem relação com os métodos de crivos, demonstrando a famosa desigualdade de Brun-Titchmarsh via crivo de Selberg. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-02-27 |
dc.date.accessioned.fl_str_mv |
2019-08-09T23:01:14Z |
dc.date.available.fl_str_mv |
2019-08-09T23:01:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/31749 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000v67j |
url |
https://repositorio.ufpe.br/handle/123456789/31749 |
identifier_str_mv |
ark:/64986/001300000v67j |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/31749/5/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/31749/1/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdf https://repositorio.ufpe.br/bitstream/123456789/31749/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/31749/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/31749/4/DISSERTA%c3%87%c3%83O%20Ricardo%20Francisco%20da%20Silva.pdf.txt |
bitstream.checksum.fl_str_mv |
8b152036e5c66e3165b988b65be84cc0 a6186846b233ceea2bef5f94b81010f1 e39d27027a6cc9cb039ad269a5db8e34 bd573a5ca8288eb7272482765f819534 9b106eff7be69dab910617a0e4221781 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172922478690304 |