Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFPE |
dARK ID: | ark:/64986/001300000s64k |
Texto Completo: | https://repositorio.ufpe.br/handle/123456789/49005 |
Resumo: | Neste trabalho elencaremos alguns resultados da teoria de Morse em dimensão finita e infinita para funcionais f duas vezes diferenciável, com derivadas até segunda ordem contínuas, definidos em uma variedade diferenciável M, modelada em um espaço de Hilbert H. Em determinados casos, tais resultados quando aliados a teoremas de deformação, nos possibilitam descrever grupos críticos de certos pontos críticos e, por conseguinte, a aquisição de teoremas de pontos críticos, que garantem sob quais condições f admite um ou mais pontos críticos não triviais. Como aplicação estudaremos a existência e multiplicidade de soluções para uma classe de problemas envolvendo o operador Laplaciano. Para tal, utilizaremos ferramentas do cálculo variacional e a Teoria de Morse aplicados a um funcional I, associado ao problema proposto. Para este feito utilizaremos técnicas envolvendo os autovalores do Laplaciano, com objetivo de descrever os grupos críticos dos pontos críticos dessa classe de problemas com base nestes autovalores. Essa análise permitirá que possamos encontrar pelo menos quatro pontos críticos não triviais e distintos. |
id |
UFPE_ff92dde1176a543cbaaa844490e77290 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/49005 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
2221 |
spelling |
SILVA, Hugo Henryque Coelho ehttp://lattes.cnpq.br/1324983852661350http://lattes.cnpq.br/3688675516051889MELO JÚNIOR, José Carlos de Albuquerque2023-02-09T12:05:01Z2023-02-09T12:05:01Z2022-02-23SILVA, Hugo Henryque Coelho e. Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/49005ark:/64986/001300000s64kNeste trabalho elencaremos alguns resultados da teoria de Morse em dimensão finita e infinita para funcionais f duas vezes diferenciável, com derivadas até segunda ordem contínuas, definidos em uma variedade diferenciável M, modelada em um espaço de Hilbert H. Em determinados casos, tais resultados quando aliados a teoremas de deformação, nos possibilitam descrever grupos críticos de certos pontos críticos e, por conseguinte, a aquisição de teoremas de pontos críticos, que garantem sob quais condições f admite um ou mais pontos críticos não triviais. Como aplicação estudaremos a existência e multiplicidade de soluções para uma classe de problemas envolvendo o operador Laplaciano. Para tal, utilizaremos ferramentas do cálculo variacional e a Teoria de Morse aplicados a um funcional I, associado ao problema proposto. Para este feito utilizaremos técnicas envolvendo os autovalores do Laplaciano, com objetivo de descrever os grupos críticos dos pontos críticos dessa classe de problemas com base nestes autovalores. Essa análise permitirá que possamos encontrar pelo menos quatro pontos críticos não triviais e distintos.CNPqIn this work we will list some results of the Morse theory in finite and infinite dimensions for functionals f twice differentiable with derivatives up to second order continuous, defined on a differentiable manifold M, modeled on a Hilbert space H. In certain cases, such results, when combined with deformation theorems, allow us to describe critical groups of certain critical points and, therefore, the acquisition of critical point theorems, which guarantee under which conditions f admits one or more critical points non-trivial. As an application we will study the existence and multiplicity of solutions for a class of problems involving the Laplacian operator. To do so, we will use variational calculus tools and Morse Theory applied to the functional I, associated with the proposed problem. For this purpose, we use the results of the Laplacian eigenvalues, with the objective of describe the critical clusters of the critical points of this class of problems based on these eigenvalues. This analysis, which allowed us to find at least four critical points non-trivial and distinct.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em MatematicaUFPEBrasilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessTeoria de MorseGrupos críticosProblema elíptico semilinearMétodos variacionaisTeoria de Morse e aplicações a uma classe de problemas elípticos semilinearesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesismestradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEORIGINALDISSERTAÇÃO Hugo Henryque Coelho e Silva.pdfDISSERTAÇÃO Hugo Henryque Coelho e Silva.pdfapplication/pdf1189448https://repositorio.ufpe.br/bitstream/123456789/49005/1/DISSERTA%c3%87%c3%83O%20Hugo%20Henryque%20Coelho%20e%20Silva.pdf0fd6d0708c748c5a63df8cd553ee6afbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/49005/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82362https://repositorio.ufpe.br/bitstream/123456789/49005/3/license.txt5e89a1613ddc8510c6576f4b23a78973MD53TEXTDISSERTAÇÃO Hugo Henryque Coelho e Silva.pdf.txtDISSERTAÇÃO Hugo Henryque Coelho e Silva.pdf.txtExtracted texttext/plain230786https://repositorio.ufpe.br/bitstream/123456789/49005/4/DISSERTA%c3%87%c3%83O%20Hugo%20Henryque%20Coelho%20e%20Silva.pdf.txt680fcd10f15325d6df82c4d708dc3b69MD54THUMBNAILDISSERTAÇÃO Hugo Henryque Coelho e Silva.pdf.jpgDISSERTAÇÃO Hugo Henryque Coelho e Silva.pdf.jpgGenerated Thumbnailimage/jpeg1193https://repositorio.ufpe.br/bitstream/123456789/49005/5/DISSERTA%c3%87%c3%83O%20Hugo%20Henryque%20Coelho%20e%20Silva.pdf.jpgf7b741b2618b1e1b3a545a5bd33fd5e1MD55123456789/490052023-02-10 02:20:34.442oai:repositorio.ufpe.br:123456789/49005VGVybW8gZGUgRGVww7NzaXRvIExlZ2FsIGUgQXV0b3JpemHDp8OjbyBwYXJhIFB1YmxpY2l6YcOnw6NvIGRlIERvY3VtZW50b3Mgbm8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRQoKCkRlY2xhcm8gZXN0YXIgY2llbnRlIGRlIHF1ZSBlc3RlIFRlcm1vIGRlIERlcMOzc2l0byBMZWdhbCBlIEF1dG9yaXphw6fDo28gdGVtIG8gb2JqZXRpdm8gZGUgZGl2dWxnYcOnw6NvIGRvcyBkb2N1bWVudG9zIGRlcG9zaXRhZG9zIG5vIFJlcG9zaXTDs3JpbyBEaWdpdGFsIGRhIFVGUEUgZSBkZWNsYXJvIHF1ZToKCkkgLSBvcyBkYWRvcyBwcmVlbmNoaWRvcyBubyBmb3JtdWzDoXJpbyBkZSBkZXDDs3NpdG8gc8OjbyB2ZXJkYWRlaXJvcyBlIGF1dMOqbnRpY29zOwoKSUkgLSAgbyBjb250ZcO6ZG8gZGlzcG9uaWJpbGl6YWRvIMOpIGRlIHJlc3BvbnNhYmlsaWRhZGUgZGUgc3VhIGF1dG9yaWE7CgpJSUkgLSBvIGNvbnRlw7pkbyDDqSBvcmlnaW5hbCwgZSBzZSBvIHRyYWJhbGhvIGUvb3UgcGFsYXZyYXMgZGUgb3V0cmFzIHBlc3NvYXMgZm9yYW0gdXRpbGl6YWRvcywgZXN0YXMgZm9yYW0gZGV2aWRhbWVudGUgcmVjb25oZWNpZGFzOwoKSVYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIG9icmEgY29sZXRpdmEgKG1haXMgZGUgdW0gYXV0b3IpOiB0b2RvcyBvcyBhdXRvcmVzIGVzdMOjbyBjaWVudGVzIGRvIGRlcMOzc2l0byBlIGRlIGFjb3JkbyBjb20gZXN0ZSB0ZXJtbzsKClYgLSBxdWFuZG8gdHJhdGFyLXNlIGRlIFRyYWJhbGhvIGRlIENvbmNsdXPDo28gZGUgQ3Vyc28sIERpc3NlcnRhw6fDo28gb3UgVGVzZTogbyBhcnF1aXZvIGRlcG9zaXRhZG8gY29ycmVzcG9uZGUgw6AgdmVyc8OjbyBmaW5hbCBkbyB0cmFiYWxobzsKClZJIC0gcXVhbmRvIHRyYXRhci1zZSBkZSBUcmFiYWxobyBkZSBDb25jbHVzw6NvIGRlIEN1cnNvLCBEaXNzZXJ0YcOnw6NvIG91IFRlc2U6IGVzdG91IGNpZW50ZSBkZSBxdWUgYSBhbHRlcmHDp8OjbyBkYSBtb2RhbGlkYWRlIGRlIGFjZXNzbyBhbyBkb2N1bWVudG8gYXDDs3MgbyBkZXDDs3NpdG8gZSBhbnRlcyBkZSBmaW5kYXIgbyBwZXLDrW9kbyBkZSBlbWJhcmdvLCBxdWFuZG8gZm9yIGVzY29saGlkbyBhY2Vzc28gcmVzdHJpdG8sIHNlcsOhIHBlcm1pdGlkYSBtZWRpYW50ZSBzb2xpY2l0YcOnw6NvIGRvIChhKSBhdXRvciAoYSkgYW8gU2lzdGVtYSBJbnRlZ3JhZG8gZGUgQmlibGlvdGVjYXMgZGEgVUZQRSAoU0lCL1VGUEUpLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gQWJlcnRvOgoKTmEgcXVhbGlkYWRlIGRlIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGF1dG9yIHF1ZSByZWNhZW0gc29icmUgZXN0ZSBkb2N1bWVudG8sIGZ1bmRhbWVudGFkbyBuYSBMZWkgZGUgRGlyZWl0byBBdXRvcmFsIG5vIDkuNjEwLCBkZSAxOSBkZSBmZXZlcmVpcm8gZGUgMTk5OCwgYXJ0LiAyOSwgaW5jaXNvIElJSSwgYXV0b3Jpem8gYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIGEgZGlzcG9uaWJpbGl6YXIgZ3JhdHVpdGFtZW50ZSwgc2VtIHJlc3NhcmNpbWVudG8gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBwYXJhIGZpbnMgZGUgbGVpdHVyYSwgaW1wcmVzc8OjbyBlL291IGRvd25sb2FkIChhcXVpc2nDp8OjbykgYXRyYXbDqXMgZG8gc2l0ZSBkbyBSZXBvc2l0w7NyaW8gRGlnaXRhbCBkYSBVRlBFIG5vIGVuZGVyZcOnbyBodHRwOi8vd3d3LnJlcG9zaXRvcmlvLnVmcGUuYnIsIGEgcGFydGlyIGRhIGRhdGEgZGUgZGVww7NzaXRvLgoKIApQYXJhIHRyYWJhbGhvcyBlbSBBY2Vzc28gUmVzdHJpdG86CgpOYSBxdWFsaWRhZGUgZGUgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgYXV0b3IgcXVlIHJlY2FlbSBzb2JyZSBlc3RlIGRvY3VtZW50bywgZnVuZGFtZW50YWRvIG5hIExlaSBkZSBEaXJlaXRvIEF1dG9yYWwgbm8gOS42MTAgZGUgMTkgZGUgZmV2ZXJlaXJvIGRlIDE5OTgsIGFydC4gMjksIGluY2lzbyBJSUksIGF1dG9yaXpvIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgUGVybmFtYnVjbyBhIGRpc3BvbmliaWxpemFyIGdyYXR1aXRhbWVudGUsIHNlbSByZXNzYXJjaW1lbnRvIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgcGFyYSBmaW5zIGRlIGxlaXR1cmEsIGltcHJlc3PDo28gZS9vdSBkb3dubG9hZCAoYXF1aXNpw6fDo28pIGF0cmF2w6lzIGRvIHNpdGUgZG8gUmVwb3NpdMOzcmlvIERpZ2l0YWwgZGEgVUZQRSBubyBlbmRlcmXDp28gaHR0cDovL3d3dy5yZXBvc2l0b3Jpby51ZnBlLmJyLCBxdWFuZG8gZmluZGFyIG8gcGVyw61vZG8gZGUgZW1iYXJnbyBjb25kaXplbnRlIGFvIHRpcG8gZGUgZG9jdW1lbnRvLCBjb25mb3JtZSBpbmRpY2FkbyBubyBjYW1wbyBEYXRhIGRlIEVtYmFyZ28uCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-02-10T05:20:34Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares |
title |
Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares |
spellingShingle |
Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares SILVA, Hugo Henryque Coelho e Teoria de Morse Grupos críticos Problema elíptico semilinear Métodos variacionais |
title_short |
Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares |
title_full |
Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares |
title_fullStr |
Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares |
title_full_unstemmed |
Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares |
title_sort |
Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares |
author |
SILVA, Hugo Henryque Coelho e |
author_facet |
SILVA, Hugo Henryque Coelho e |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/1324983852661350 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3688675516051889 |
dc.contributor.author.fl_str_mv |
SILVA, Hugo Henryque Coelho e |
dc.contributor.advisor1.fl_str_mv |
MELO JÚNIOR, José Carlos de Albuquerque |
contributor_str_mv |
MELO JÚNIOR, José Carlos de Albuquerque |
dc.subject.por.fl_str_mv |
Teoria de Morse Grupos críticos Problema elíptico semilinear Métodos variacionais |
topic |
Teoria de Morse Grupos críticos Problema elíptico semilinear Métodos variacionais |
description |
Neste trabalho elencaremos alguns resultados da teoria de Morse em dimensão finita e infinita para funcionais f duas vezes diferenciável, com derivadas até segunda ordem contínuas, definidos em uma variedade diferenciável M, modelada em um espaço de Hilbert H. Em determinados casos, tais resultados quando aliados a teoremas de deformação, nos possibilitam descrever grupos críticos de certos pontos críticos e, por conseguinte, a aquisição de teoremas de pontos críticos, que garantem sob quais condições f admite um ou mais pontos críticos não triviais. Como aplicação estudaremos a existência e multiplicidade de soluções para uma classe de problemas envolvendo o operador Laplaciano. Para tal, utilizaremos ferramentas do cálculo variacional e a Teoria de Morse aplicados a um funcional I, associado ao problema proposto. Para este feito utilizaremos técnicas envolvendo os autovalores do Laplaciano, com objetivo de descrever os grupos críticos dos pontos críticos dessa classe de problemas com base nestes autovalores. Essa análise permitirá que possamos encontrar pelo menos quatro pontos críticos não triviais e distintos. |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022-02-23 |
dc.date.accessioned.fl_str_mv |
2023-02-09T12:05:01Z |
dc.date.available.fl_str_mv |
2023-02-09T12:05:01Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Hugo Henryque Coelho e. Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de Pernambuco, Recife, 2022. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/49005 |
dc.identifier.dark.fl_str_mv |
ark:/64986/001300000s64k |
identifier_str_mv |
SILVA, Hugo Henryque Coelho e. Teoria de Morse e aplicações a uma classe de problemas elípticos semilineares. 2022. Dissertação (Mestrado em Matemática) – Universidade Federal de Pernambuco, Recife, 2022. ark:/64986/001300000s64k |
url |
https://repositorio.ufpe.br/handle/123456789/49005 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Matematica |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/49005/1/DISSERTA%c3%87%c3%83O%20Hugo%20Henryque%20Coelho%20e%20Silva.pdf https://repositorio.ufpe.br/bitstream/123456789/49005/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/49005/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/49005/4/DISSERTA%c3%87%c3%83O%20Hugo%20Henryque%20Coelho%20e%20Silva.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/49005/5/DISSERTA%c3%87%c3%83O%20Hugo%20Henryque%20Coelho%20e%20Silva.pdf.jpg |
bitstream.checksum.fl_str_mv |
0fd6d0708c748c5a63df8cd553ee6afb e39d27027a6cc9cb039ad269a5db8e34 5e89a1613ddc8510c6576f4b23a78973 680fcd10f15325d6df82c4d708dc3b69 f7b741b2618b1e1b3a545a5bd33fd5e1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1815172902927990784 |