APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Boletim de Ciências Geodésicas |
Texto Completo: | https://revistas.ufpr.br/bcg/article/view/29182 |
Resumo: | Voronoi and Delaunay structures are presented as discretization tools to be used innumerical surface integration aiming the computation of geodetic problemssolutions, when under the integral there is a non-analytical function (e. g., gravityanomaly and height). In the Voronoi approach, the target area is partitioned intopolygons which contain the observed point and no interpolation is necessary, onlythe original data is used. In the Delaunay approach, the observed points are verticesof triangular cells and the value for a cell is interpolated for its barycenter. If theamount and distribution of the observed points are adequate, gridding operation isnot required and the numerical surface integration is carried out by point-wise. Evenwhen the amount and distribution of the observed points are not enough, thestructures of Voronoi and Delaunay can combine grid with observed points in orderto preserve the integrity of the original information. Both schemes are applied to thecomputation of the Stokes’ integral, the terrain correction, the indirect effect and thegradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area. |
id |
UFPR-2_56c89ee929b6ec3e077ecc3ffcd4bb70 |
---|---|
oai_identifier_str |
oai:revistas.ufpr.br:article/29182 |
network_acronym_str |
UFPR-2 |
network_name_str |
Boletim de Ciências Geodésicas |
repository_id_str |
|
spelling |
APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEMGeociências; Geodésia2-D tessellation; Delaunay Triangulation; Voronoi Cells; Geodesy; Stokes’ IntegralVoronoi and Delaunay structures are presented as discretization tools to be used innumerical surface integration aiming the computation of geodetic problemssolutions, when under the integral there is a non-analytical function (e. g., gravityanomaly and height). In the Voronoi approach, the target area is partitioned intopolygons which contain the observed point and no interpolation is necessary, onlythe original data is used. In the Delaunay approach, the observed points are verticesof triangular cells and the value for a cell is interpolated for its barycenter. If theamount and distribution of the observed points are adequate, gridding operation isnot required and the numerical surface integration is carried out by point-wise. Evenwhen the amount and distribution of the observed points are not enough, thestructures of Voronoi and Delaunay can combine grid with observed points in orderto preserve the integrity of the original information. Both schemes are applied to thecomputation of the Stokes’ integral, the terrain correction, the indirect effect and thegradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.Boletim de Ciências GeodésicasBulletin of Geodetic SciencesQUINTERO, C. A. B.ESCOBAR, I. P.Ponte-NETO, C. F.2012-09-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/29182Boletim de Ciências Geodésicas; Vol 18, No 3 (2012)Bulletin of Geodetic Sciences; Vol 18, No 3 (2012)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/29182/18992info:eu-repo/semantics/openAccess2012-09-27T09:03:51Zoai:revistas.ufpr.br:article/29182Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2012-09-27T09:03:51Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false |
dc.title.none.fl_str_mv |
APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM |
title |
APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM |
spellingShingle |
APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM QUINTERO, C. A. B. Geociências; Geodésia 2-D tessellation; Delaunay Triangulation; Voronoi Cells; Geodesy; Stokes’ Integral |
title_short |
APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM |
title_full |
APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM |
title_fullStr |
APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM |
title_full_unstemmed |
APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM |
title_sort |
APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM |
author |
QUINTERO, C. A. B. |
author_facet |
QUINTERO, C. A. B. ESCOBAR, I. P. Ponte-NETO, C. F. |
author_role |
author |
author2 |
ESCOBAR, I. P. Ponte-NETO, C. F. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
QUINTERO, C. A. B. ESCOBAR, I. P. Ponte-NETO, C. F. |
dc.subject.por.fl_str_mv |
Geociências; Geodésia 2-D tessellation; Delaunay Triangulation; Voronoi Cells; Geodesy; Stokes’ Integral |
topic |
Geociências; Geodésia 2-D tessellation; Delaunay Triangulation; Voronoi Cells; Geodesy; Stokes’ Integral |
description |
Voronoi and Delaunay structures are presented as discretization tools to be used innumerical surface integration aiming the computation of geodetic problemssolutions, when under the integral there is a non-analytical function (e. g., gravityanomaly and height). In the Voronoi approach, the target area is partitioned intopolygons which contain the observed point and no interpolation is necessary, onlythe original data is used. In the Delaunay approach, the observed points are verticesof triangular cells and the value for a cell is interpolated for its barycenter. If theamount and distribution of the observed points are adequate, gridding operation isnot required and the numerical surface integration is carried out by point-wise. Evenwhen the amount and distribution of the observed points are not enough, thestructures of Voronoi and Delaunay can combine grid with observed points in orderto preserve the integrity of the original information. Both schemes are applied to thecomputation of the Stokes’ integral, the terrain correction, the indirect effect and thegradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09-26 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/29182 |
url |
https://revistas.ufpr.br/bcg/article/view/29182 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revistas.ufpr.br/bcg/article/view/29182/18992 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
publisher.none.fl_str_mv |
Boletim de Ciências Geodésicas Bulletin of Geodetic Sciences |
dc.source.none.fl_str_mv |
Boletim de Ciências Geodésicas; Vol 18, No 3 (2012) Bulletin of Geodetic Sciences; Vol 18, No 3 (2012) 1982-2170 1413-4853 reponame:Boletim de Ciências Geodésicas instname:Universidade Federal do Paraná (UFPR) instacron:UFPR |
instname_str |
Universidade Federal do Paraná (UFPR) |
instacron_str |
UFPR |
institution |
UFPR |
reponame_str |
Boletim de Ciências Geodésicas |
collection |
Boletim de Ciências Geodésicas |
repository.name.fl_str_mv |
Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR) |
repository.mail.fl_str_mv |
qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br |
_version_ |
1799771721765486592 |