APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM

Detalhes bibliográficos
Autor(a) principal: QUINTERO, C. A. B.
Data de Publicação: 2012
Outros Autores: ESCOBAR, I. P., Ponte-NETO, C. F.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Boletim de Ciências Geodésicas
Texto Completo: https://revistas.ufpr.br/bcg/article/view/29182
Resumo: Voronoi and Delaunay structures are presented as discretization tools to be used innumerical surface integration aiming the computation of geodetic problemssolutions, when under the integral there is a non-analytical function (e. g., gravityanomaly and height). In the Voronoi approach, the target area is partitioned intopolygons which contain the observed point and no interpolation is necessary, onlythe original data is used. In the Delaunay approach, the observed points are verticesof triangular cells and the value for a cell is interpolated for its barycenter. If theamount and distribution of the observed points are adequate, gridding operation isnot required and the numerical surface integration is carried out by point-wise. Evenwhen the amount and distribution of the observed points are not enough, thestructures of Voronoi and Delaunay can combine grid with observed points in orderto preserve the integrity of the original information. Both schemes are applied to thecomputation of the Stokes’ integral, the terrain correction, the indirect effect and thegradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.
id UFPR-2_56c89ee929b6ec3e077ecc3ffcd4bb70
oai_identifier_str oai:revistas.ufpr.br:article/29182
network_acronym_str UFPR-2
network_name_str Boletim de Ciências Geodésicas
repository_id_str
spelling APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEMGeociências; Geodésia2-D tessellation; Delaunay Triangulation; Voronoi Cells; Geodesy; Stokes’ IntegralVoronoi and Delaunay structures are presented as discretization tools to be used innumerical surface integration aiming the computation of geodetic problemssolutions, when under the integral there is a non-analytical function (e. g., gravityanomaly and height). In the Voronoi approach, the target area is partitioned intopolygons which contain the observed point and no interpolation is necessary, onlythe original data is used. In the Delaunay approach, the observed points are verticesof triangular cells and the value for a cell is interpolated for its barycenter. If theamount and distribution of the observed points are adequate, gridding operation isnot required and the numerical surface integration is carried out by point-wise. Evenwhen the amount and distribution of the observed points are not enough, thestructures of Voronoi and Delaunay can combine grid with observed points in orderto preserve the integrity of the original information. Both schemes are applied to thecomputation of the Stokes’ integral, the terrain correction, the indirect effect and thegradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.Boletim de Ciências GeodésicasBulletin of Geodetic SciencesQUINTERO, C. A. B.ESCOBAR, I. P.Ponte-NETO, C. F.2012-09-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ufpr.br/bcg/article/view/29182Boletim de Ciências Geodésicas; Vol 18, No 3 (2012)Bulletin of Geodetic Sciences; Vol 18, No 3 (2012)1982-21701413-4853reponame:Boletim de Ciências Geodésicasinstname:Universidade Federal do Paraná (UFPR)instacron:UFPRporhttps://revistas.ufpr.br/bcg/article/view/29182/18992info:eu-repo/semantics/openAccess2012-09-27T09:03:51Zoai:revistas.ufpr.br:article/29182Revistahttps://revistas.ufpr.br/bcgPUBhttps://revistas.ufpr.br/bcg/oaiqdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br1982-21701413-4853opendoar:2012-09-27T09:03:51Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)false
dc.title.none.fl_str_mv APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM
title APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM
spellingShingle APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM
QUINTERO, C. A. B.
Geociências; Geodésia
2-D tessellation; Delaunay Triangulation; Voronoi Cells; Geodesy; Stokes’ Integral
title_short APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM
title_full APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM
title_fullStr APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM
title_full_unstemmed APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM
title_sort APPLICATIONS OF VORONOI AND DELAUNAY DIAGRAMS IN THE SOLUTION OF THE GEODETIC BOUNDARY VALUE PROBLEM
author QUINTERO, C. A. B.
author_facet QUINTERO, C. A. B.
ESCOBAR, I. P.
Ponte-NETO, C. F.
author_role author
author2 ESCOBAR, I. P.
Ponte-NETO, C. F.
author2_role author
author
dc.contributor.none.fl_str_mv
dc.contributor.author.fl_str_mv QUINTERO, C. A. B.
ESCOBAR, I. P.
Ponte-NETO, C. F.
dc.subject.por.fl_str_mv Geociências; Geodésia
2-D tessellation; Delaunay Triangulation; Voronoi Cells; Geodesy; Stokes’ Integral
topic Geociências; Geodésia
2-D tessellation; Delaunay Triangulation; Voronoi Cells; Geodesy; Stokes’ Integral
description Voronoi and Delaunay structures are presented as discretization tools to be used innumerical surface integration aiming the computation of geodetic problemssolutions, when under the integral there is a non-analytical function (e. g., gravityanomaly and height). In the Voronoi approach, the target area is partitioned intopolygons which contain the observed point and no interpolation is necessary, onlythe original data is used. In the Delaunay approach, the observed points are verticesof triangular cells and the value for a cell is interpolated for its barycenter. If theamount and distribution of the observed points are adequate, gridding operation isnot required and the numerical surface integration is carried out by point-wise. Evenwhen the amount and distribution of the observed points are not enough, thestructures of Voronoi and Delaunay can combine grid with observed points in orderto preserve the integrity of the original information. Both schemes are applied to thecomputation of the Stokes’ integral, the terrain correction, the indirect effect and thegradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.
publishDate 2012
dc.date.none.fl_str_mv 2012-09-26
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufpr.br/bcg/article/view/29182
url https://revistas.ufpr.br/bcg/article/view/29182
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistas.ufpr.br/bcg/article/view/29182/18992
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
publisher.none.fl_str_mv Boletim de Ciências Geodésicas
Bulletin of Geodetic Sciences
dc.source.none.fl_str_mv Boletim de Ciências Geodésicas; Vol 18, No 3 (2012)
Bulletin of Geodetic Sciences; Vol 18, No 3 (2012)
1982-2170
1413-4853
reponame:Boletim de Ciências Geodésicas
instname:Universidade Federal do Paraná (UFPR)
instacron:UFPR
instname_str Universidade Federal do Paraná (UFPR)
instacron_str UFPR
institution UFPR
reponame_str Boletim de Ciências Geodésicas
collection Boletim de Ciências Geodésicas
repository.name.fl_str_mv Boletim de Ciências Geodésicas - Universidade Federal do Paraná (UFPR)
repository.mail.fl_str_mv qdalmolin@ufpr.br|| danielsantos@ufpr.br||qdalmolin@ufpr.br|| danielsantos@ufpr.br
_version_ 1799771721765486592